Skip to main content

ZF TRW demonstrates semi-automated highway driving assist system

ZF TRW has demonstrated its semi-automated driving capabilities at a test track event in Berlin, Germany. The vehicle has a 'Highway Driving Assist feature which can enable automatic steering, braking and acceleration for highway speeds above 40 kph. The demonstration vehicle integrates ZF TRW's AC1000 radar and S-Cam 3 video camera sensor together with its electrically powered steering belt drive (EPS BD) and electronic stability control EBC 460 – the combination of adaptive cruise control (ACC) and lan
July 2, 2015 Read time: 2 mins
ZF TRW has demonstrated its semi-automated driving capabilities at a test track event in Berlin, Germany. The vehicle has a 'Highway Driving Assist feature which can enable automatic steering, braking and acceleration for highway speeds above 40 kph.

The demonstration vehicle integrates ZF TRW's AC1000 radar and S-Cam 3 video camera sensor together with its electrically powered steering belt drive (EPS BD) and electronic stability control EBC 460 – the combination of adaptive cruise control (ACC) and lane centring assist (LCA) functionalities. The ACC keeps the vehicle at a set speed until a slower vehicle appears in front or if another car cuts across the lane. It then automatically brakes and/or accelerates the vehicle to keep a driver-selected safe gap (constant time interval) behind the slower vehicle. At the same time, the forward looking camera tracks the lane markings to keep the car in the centre of the lane via the electric steering system. The driver can easily override the system at any time.

Peter Lake, executive vice president, Sales and Business Development at ZF TRW commented: "We're following a building block approach to automated driving functions showcasing what is achievable today using proven technology. Drivers will need to trust the technology and see its benefits as we move along a continuum to higher degrees of automation leading to more convenience and the ultimate goal, safer vehicles and roadways."

Lake continued: "The prototype vehicle represents a milestone in systems integration – one of ZF TRW's core capabilities as the only complete safety systems supplier worldwide. The beauty of these technologies is their flexible or scalable nature – the same sensing hardware can be used for different functions to suit vehicle manufacturer requirements. For example, the driver assist hardware on the vehicle could also enable Emergency Steering Assist functionality.

"At a later stage, we'll be showcasing a 360 degree sensor system which will also enable vehicles to automatically overtake (lane change control). The next decade represents a huge opportunity to improve not only the driving experience, but fundamentally road safety."

Related Content

  • January 5, 2017
    ZF and NVIDIA announce AI system for autonomous driving
    German auto supplier ZF is working with NVIDIA to develop artificial intelligence (AI) systems for the transportation industry, including automated and autonomous driving systems for passenger cars, commercial trucks, and industrial applications. Unveiled at CES 2017 in Las Vegas, the ZF ProAI for highway automated driving is ZF’s first system developed using NVIDIA AI technology. It aims to enable vehicles to better understand their environment by using deep learning to process sensor and camera data. I
  • October 21, 2016
    New Tesla models to have ‘full self-driving capability’
    In its online blog, Tesla says that self-driving vehicles will play a crucial role in improving transportation safety and accelerating the world’s transition to a sustainable future. Full autonomy will enable a Tesla to be substantially safer than a human driver, lower the financial cost of transportation for those who own a car and provide low-cost on-demand mobility for those who do not. The company has announced that from now, all Tesla vehicles produced in its factory, including Model 3, will have th
  • July 27, 2012
    Give offending drivers credit for good behaviour
    Andrew Rooke and Dave Marples of Technolution B.V. take a look at what can be done to address a long-standing problem: the all-or-nothing approach of automated enforcement. To start, a brief history of speeding: on 14 November 1896, the first Veteran Car Run was staged in England from London to Brighton. It was organised to celebrate new British legislation to raise the maximum speed of vehicles from four to 14mph while also removing the need for a person waving a red flag to walk in front of the car and wa
  • April 19, 2012
    Electric park brake technology gaining momentum in North America
    TRW, a specialist in active and passive safety, says it has been awarded new business for its next-generation electric park brake (EPB) technology with two major North American based vehicle manufacturers. The system functions as a conventional hydraulic brake for standard service brake applications, and as an electric brake for parking and emergency braking. TRW launched the first integrated caliper EPB system in 2001 and is bringing the wide range of functional and ancillary benefits of EPB to the North A