Skip to main content

ZF TRW demonstrates semi-automated highway driving assist system

ZF TRW has demonstrated its semi-automated driving capabilities at a test track event in Berlin, Germany. The vehicle has a 'Highway Driving Assist feature which can enable automatic steering, braking and acceleration for highway speeds above 40 kph. The demonstration vehicle integrates ZF TRW's AC1000 radar and S-Cam 3 video camera sensor together with its electrically powered steering belt drive (EPS BD) and electronic stability control EBC 460 – the combination of adaptive cruise control (ACC) and lan
July 2, 2015 Read time: 2 mins
ZF TRW has demonstrated its semi-automated driving capabilities at a test track event in Berlin, Germany. The vehicle has a 'Highway Driving Assist feature which can enable automatic steering, braking and acceleration for highway speeds above 40 kph.

The demonstration vehicle integrates ZF TRW's AC1000 radar and S-Cam 3 video camera sensor together with its electrically powered steering belt drive (EPS BD) and electronic stability control EBC 460 – the combination of adaptive cruise control (ACC) and lane centring assist (LCA) functionalities. The ACC keeps the vehicle at a set speed until a slower vehicle appears in front or if another car cuts across the lane. It then automatically brakes and/or accelerates the vehicle to keep a driver-selected safe gap (constant time interval) behind the slower vehicle. At the same time, the forward looking camera tracks the lane markings to keep the car in the centre of the lane via the electric steering system. The driver can easily override the system at any time.

Peter Lake, executive vice president, Sales and Business Development at ZF TRW commented: "We're following a building block approach to automated driving functions showcasing what is achievable today using proven technology. Drivers will need to trust the technology and see its benefits as we move along a continuum to higher degrees of automation leading to more convenience and the ultimate goal, safer vehicles and roadways."

Lake continued: "The prototype vehicle represents a milestone in systems integration – one of ZF TRW's core capabilities as the only complete safety systems supplier worldwide. The beauty of these technologies is their flexible or scalable nature – the same sensing hardware can be used for different functions to suit vehicle manufacturer requirements. For example, the driver assist hardware on the vehicle could also enable Emergency Steering Assist functionality.

"At a later stage, we'll be showcasing a 360 degree sensor system which will also enable vehicles to automatically overtake (lane change control). The next decade represents a huge opportunity to improve not only the driving experience, but fundamentally road safety."

Related Content

  • V2X: The design challenges
    May 2, 2018
    The connected future throws up a number of enticing possibilities for us all. But, says Houman Zarrinkoub of MathWorks, issues around visualisation, prototyping and model evolution need to be examined carefully. We are all aware of the huge amount of investment going into driverless car technologies. With the likes of Volvo, Tesla and BMW getting in on the act, soon they will be a common sight on our roads. However, for this to occur, the vehicles must be able to connect with each other and ensure driver
  • Can AV mapping rely on crowds?
    June 29, 2021
    Mapping tech companies need to expand their data inputs beyond crowdsourcing in order to maintain temporally accurate maps at scale, says Ro Gupta at Carmera
  • PoliScanspeed camera nabs two serious speeders in Australia
    May 1, 2012
    Two reckless speedsters were caught having a road a race in Western Australia by a Vitronic PoliScanspeed camera, the company reports. The speed measuring system revealed they were 105 kph (65 mph) and 117 kph (73 mph) above the official speed limit. The two were sentenced to high fines and long-term suspension of their driver licenses.
  • Gartner says connected car production to grow rapidly over next five years
    October 7, 2016
    Connected car production is growing rapidly in both mature and emerging automobile markets, according to the latest forecast by Gartner, Forecast: Connected Car Production, Worldwide. The production of new automobiles equipped with data connectivity, either through a built-in communications module or by a tether to a mobile device, is forecast to reach 12.4 million in 2016 and increase to 61 million in 2020.