Skip to main content

VTT's autonomous cars take to public roads

The autonomous cars developed by VTT Technical Research Centre of Finland are able to exchange information with each other and their driving environment. They are able to follow a pre-programmed route and avoid collisions with sudden obstacles without input from the driver. The cars currently require the lane markings or sides of the road to be visible. However, by 2020, VTT says the cars will be driving in more demanding conditions on roads covered in gravel and snow. The autonomous cars feature a thermal
May 18, 2017 Read time: 2 mins
The autonomous cars developed by 814 VTT Technical Research Centre of Finland are able to exchange information with each other and their driving environment. They are able to follow a pre-programmed route and avoid collisions with sudden obstacles without input from the driver. The cars currently require the lane markings or sides of the road to be visible. However, by 2020, VTT says the cars will be driving in more demanding conditions on roads covered in gravel and snow.

The autonomous cars feature a thermal camera for observing people and animals; a stereo camera and radar for high-resolution scanning of the vicinity; laser scanners and long-range radars for seeing further; and GPS/Glonass receivers for positioning. The cars also have inertia units to determine direction and acceleration. The actuators are cylinders and motors. The sensors and actuators are connected by intelligence that creates a situational awareness and controls the actuators so that the car moves as planned at an accuracy of milliseconds and centimetres.

According to project manager Matti Kutila, the next step for VTT's automated cars will be changing the wavelengths of the optical components, increasing the resolution of the radar and building more intelligence into the software monitoring the capabilities of the sensors. These are intended to tackle demanding weather conditions.

Different scenarios are added step by step in the development of the autonomous cars, such as cities, main roads, snow, exit ramps that the car can manage, while increasing the driving speed and managing difficult driving conditions with improved intelligence.

Related Content

  • November 21, 2013
    Autonomous vehicles, the pros and cons
    Driver interface and human factors could provide the biggest obstacles to autonomous vehicles as Jon Masters discovers.
  • January 26, 2017
    Fully autonomous vehicles ‘spur LiDAR sensors mass adoption’
    Cost-effective, high-resolution light detection and ranging (LiDAR) sensors capable of long-range object detection will be necessary for high to fully-automated driving applications. Demand for 3D mapping and imaging, better overall performance, automated processing of graphic data gathering and self-sufficient sensor with best-in-class performance in low-visibility conditions are factors driving the development and adoption of LiDAR sensors within the advanced driver assistance systems (ADAS) sensor suite
  • April 10, 2014
    Cellint measures speed and travel time without roadside infrastructure
    Collecting speed and travel time data without using roadside infrastructure could offer new possibilities to cash-strapped road authorities. Streaming video may be useful for traffic controllers to monitor incidents and automatic number plate recognition may be required for enforcement, but neither are necessary for many ITS functions. For instance travel times, tailbacks, percentage of vehicles turning, origin and destination analysis can all be done using Bluetooth and/or WI-Fi sensors and without video o
  • February 23, 2016
    Ford to triple investment in semi-autonomous cars
    Speaking at the Mobile World Congress in Barcelona, Ford president and CEO Mark Fields said that the company will triple engineering investment in driver assist technology, speeding the roll-out of semi automated systems that make it easier to park and drive in heavy traffic as the company continues to expand its Ford Smart Mobility plan. Fields’ keynote at Mobile World Congress in Barcelona focused on Ford’s transition from an automotive company to an auto and a mobility company through Ford Smart Mobil