Skip to main content

VTT's autonomous cars take to public roads

The autonomous cars developed by VTT Technical Research Centre of Finland are able to exchange information with each other and their driving environment. They are able to follow a pre-programmed route and avoid collisions with sudden obstacles without input from the driver. The cars currently require the lane markings or sides of the road to be visible. However, by 2020, VTT says the cars will be driving in more demanding conditions on roads covered in gravel and snow. The autonomous cars feature a thermal
May 18, 2017 Read time: 2 mins
The autonomous cars developed by 814 VTT Technical Research Centre of Finland are able to exchange information with each other and their driving environment. They are able to follow a pre-programmed route and avoid collisions with sudden obstacles without input from the driver. The cars currently require the lane markings or sides of the road to be visible. However, by 2020, VTT says the cars will be driving in more demanding conditions on roads covered in gravel and snow.

The autonomous cars feature a thermal camera for observing people and animals; a stereo camera and radar for high-resolution scanning of the vicinity; laser scanners and long-range radars for seeing further; and GPS/Glonass receivers for positioning. The cars also have inertia units to determine direction and acceleration. The actuators are cylinders and motors. The sensors and actuators are connected by intelligence that creates a situational awareness and controls the actuators so that the car moves as planned at an accuracy of milliseconds and centimetres.

According to project manager Matti Kutila, the next step for VTT's automated cars will be changing the wavelengths of the optical components, increasing the resolution of the radar and building more intelligence into the software monitoring the capabilities of the sensors. These are intended to tackle demanding weather conditions.

Different scenarios are added step by step in the development of the autonomous cars, such as cities, main roads, snow, exit ramps that the car can manage, while increasing the driving speed and managing difficult driving conditions with improved intelligence.

Related Content

  • April 10, 2014
    Smart cameras offer real-time alerts
    Intelligent traffic cameras open up a host of possibilities for traffic planners and controllers alike. If traffic management centres (TMCs) around the world are to cope with the increasing demands of growing traffic flows while maintaining or improving transport safety and efficiency, then video monitoring will have to be supplemented by automated warnings of incidents or deviations. According to Patrik Anderson, business development director at Swedish camera manufacturer Axis Communications, it is no
  • February 14, 2019
    Cognitive Technologies to develop autonomous tram in Russia
    Cognitive Technologies has joined forces with Russian manufacturer PC Transport Systems to deploy an autonomous tram on the streets of Moscow by 2022. Cognitive says that its simplified system means autonomous trams will appear on public roads much earlier than self-driving cars. The company claims its system will detect vehicle and other trams, traffic lights, pedestrians, tram and bus stops, railway and switches and obstacles. Also, the technology will allow the tram to stop in front of obstacles a
  • December 8, 2016
    Data handling important for autonomous vehicles
    Data handling is becoming an ever-greater part of transportation and never more so than with autonomous vehicles, as Andrew Bardin Williams hears from some big names.
  • August 24, 2016
    When weather warnings get hyperlocal
    David Crawford looks at new technologies to cope with the age-old problem of driving in bad weather. On the 10-year average, between 2005 and 2014 bad weather contributed to more than 1.5 million vehicle crashes in the US each year, resulting in more than 800,000 injuries and 7,400 deaths. These were the findings of analysis by Booz Allen Hamilton of NHTSA data which concluded that the loss of life, hospital treatment and damage to assets costs an annual average of $42bn.