Skip to main content

VTT develops new technology for autonomous ship navigation systems

Finland’s VTT Technical Research Centre is developing safe steering for the remote-monitored and controlled autonomous ships of the future.
June 19, 2017 Read time: 2 mins

Finland’s 814 VTT Technical Research Centre is developing safe steering for the remote-monitored and controlled autonomous ships of the future.

VTT says the ships of the future will largely be controlled by artificial intelligence, but must be monitored and controlled on demand by land-based professionals. This trend sets new challenges also for autonomous ship navigation systems, which must be able to control ships in various situations.

The Apilot autopilot under development by VTT has three modes: track, heading and slow joystick control for docking situations.

In track mode, Apilot steers the ship along a previously agreed route. If the ship detects another vessel, which must be avoided, the autopilot switches to heading mode, which enables Apilot to avoid the other vessel with a small change in the ship’s heading. Autopilot returns to track mode after the other vessel has been avoided.

In joystick mode, control and propulsion equipment are adjusted to low speeds manoeuvrings. Apilot puts the ship into the desired operating mode, for example to manoeuvre sideways into a dock.

In all situations, the autopilot ensures that the ship remains within a set distance from the planned route. If the limits are exceeded, the autopilot gives a warning and remote control must be taken of the ship.

VTT has studied interaction between humans and technology in maritime transport and has developed new concepts for the bridges and remote shore control centres of the autonomous ships of the future. The aim is to make operations more safe, efficient and comfortable by seeking new solutions that enhance operating methods, as well as the usability and user experience of technologies.

For more information on companies in this article

Related Content

  • Temporary traffic monitoring with Bluetooth and wi-fi
    May 31, 2013
    David Crawford reviews developments in temporary ITS. Widespread take-up of technologies such as Bluetooth and wi-fi are encouraging the emergence of more sophisticated, while still cost effective, ITS responses to the traffic issues posed by temporary road situations such as work zones and special events. Andy Graham of traffic solutions specialists White Willow Consulting says: “A machine-to-machine radio link is far easier and cheaper than reading characters on a plate.” There can be other plusses. Tech
  • I-80 Smart Corridor sets the ITS standard for California's Bay Area
    March 23, 2015
    Colin Sowman looks at California’s ‘smartest’ road which will open this spring to counter congestion and accidents on one of the Bay Area’s busiest interstates. Interstate 80 (I-80) is one of the busiest roads in the San Francisco Bay area with up to 270,000 vehicles using the corridor every day. The section between the Carquinez Bridge in Crockett and the Bay Bridge not only suffers congestion during the working week but also at weekends. Traditional remedies such as building additional lanes (there are al
  • I-80 Smart Corridor sets the ITS standard for California's Bay Area
    March 23, 2015
    Colin Sowman looks at California’s ‘smartest’ road which will open this spring to counter congestion and accidents on one of the Bay Area’s busiest interstates. Interstate 80 (I-80) is one of the busiest roads in the San Francisco Bay area with up to 270,000 vehicles using the corridor every day. The section between the Carquinez Bridge in Crockett and the Bay Bridge not only suffers congestion during the working week but also at weekends. Traditional remedies such as building additional lanes (there are al
  • VTT and EEE Communications partner on black ice detector
    November 28, 2017
    EEE Innovations (EEE) and VTT Technical Research Centre (VTT) of Finland have launched a software-based solution that detects black ice which it claims can reduce fuel consumption by 20%. It is available for heavy vehicles but can also be used for private vehicles. The solution aims to detect slippery road conditions in real time and has also been piloted in an EU-level project. Data gathered from the vehicles is refined and sent out to other motorists. The driver guidance system can be installed as a