Skip to main content

VTT develops new technology for autonomous ship navigation systems

Finland’s VTT Technical Research Centre is developing safe steering for the remote-monitored and controlled autonomous ships of the future.
June 19, 2017 Read time: 2 mins

Finland’s 814 VTT Technical Research Centre is developing safe steering for the remote-monitored and controlled autonomous ships of the future.

VTT says the ships of the future will largely be controlled by artificial intelligence, but must be monitored and controlled on demand by land-based professionals. This trend sets new challenges also for autonomous ship navigation systems, which must be able to control ships in various situations.

The Apilot autopilot under development by VTT has three modes: track, heading and slow joystick control for docking situations.

In track mode, Apilot steers the ship along a previously agreed route. If the ship detects another vessel, which must be avoided, the autopilot switches to heading mode, which enables Apilot to avoid the other vessel with a small change in the ship’s heading. Autopilot returns to track mode after the other vessel has been avoided.

In joystick mode, control and propulsion equipment are adjusted to low speeds manoeuvrings. Apilot puts the ship into the desired operating mode, for example to manoeuvre sideways into a dock.

In all situations, the autopilot ensures that the ship remains within a set distance from the planned route. If the limits are exceeded, the autopilot gives a warning and remote control must be taken of the ship.

VTT has studied interaction between humans and technology in maritime transport and has developed new concepts for the bridges and remote shore control centres of the autonomous ships of the future. The aim is to make operations more safe, efficient and comfortable by seeking new solutions that enhance operating methods, as well as the usability and user experience of technologies.

For more information on companies in this article

Related Content

  • Austrian Bike2CAV V2X project could mark turning point in cyclist safety
    May 10, 2023
    Research in Salzburg into C-ITS equips bikes with V2X tech to allow detection via ITS-G5
  • Audi Urban Intelligent Assist research programme launched
    May 21, 2012
    A new research initiative launched by Audi, its electronics research laboratory in Silicon Valley and four top US universities aims to develop technologies focused on easing the congestion, dangers and inconveniences that often confront drivers in the world's biggest cities. The new three-year Audi Urban Intelligent Assist research initiative aims to take connected car, driver assistance and infrastructure electronics to the next level of providing detailed information so motorists have a better sense of th
  • Hartford’s tailors winter maintenance on Esri’s GIS platform
    August 5, 2016
    The in-house winter maintenance and vehicle tracking system built by the Public Works Department in Hartford, Connecticut, coped with record snowfalls and cut costs too. When it comes to dealing with the effects of mother nature, transport agencies can find themselves in a lose-lose situation: criticised if the roads or rail lines are disrupted by snow, ice or floods for more than a few hours and lambasted for wasting money if the equipment and stockpiles put in place for a hard winter remain unused.
  • Virtual traffic management centres, a new direction in traffic monitoring
    January 30, 2012
    David Crawford picks up a new direction trend in traffic monitoring The surprise winner in the Traffic Management Centre (TMC) category of the recently-announced 2011 OSMOSE (Open Source for MObile and SustainablE city) Awards for European innovations in urban transport, is the Danish city of Aalborg - which doesn't have a TMC. Alternatively, one might consider its 'virtual' TMC as a signpost for the future in medium-sized cities.