Skip to main content

In-vehicle warning systems ‘reduce risk of run-off-the-road crashes’

In-vehicle lane-departure warning systems can help reduce the risk of dangerous run-off-the-road crashes, according to a new study from researchers at the University of Minnesota’s HumanFIRST Laboratory. “Run-off-the-road crashes are a huge concern, especially in rural areas,” says project co-investigator Jennifer Cooper, a HumanFIRST Lab assistant scientist. “Crash statistics tell us they contribute to more than half of all vehicle fatalities nationwide and that these crashes occur most often on two-la
August 27, 2015 Read time: 3 mins
In-vehicle lane-departure warning systems can help reduce the risk of dangerous run-off-the-road crashes, according to a new study from researchers at the University of Minnesota’s HumanFIRST Laboratory.

“Run-off-the-road crashes are a huge concern, especially in rural areas,” says project co-investigator Jennifer Cooper, a HumanFIRST Lab assistant scientist. “Crash statistics tell us they contribute to more than half of all vehicle fatalities nationwide and that these crashes occur most often on two-lane rural highways.”

The toll of run-off-the-road crashes has made reducing these fatalities a top priority for transportation safety practitioners and researchers. One common countermeasure is shoulder rumble strips, but they come with drawbacks including startling drivers into overcorrection, generating noise complaints from neighbours, and creating a danger for cyclists.

“An alternative solution to rumble strips is in-vehicle lane-departure warning systems that can track the vehicle’s position in relation to the lane boundary and issue a timely warning,” Cooper says. “Currently, in-vehicle warning systems are in the early stages of development and have little consistency in the types of interfaces they use, making it the ideal time to study exactly how these systems impact driver behaviour.”

To aid in the development of appropriate and timely warning systems, HumanFIRST researchers studied behavioural responses to in-vehicle lane-departure warning systems using a driving simulator. In the study, participants drove two simulated real-world, two-lane rural highways with a history of lane-departure crashes.

During their drives, participants experienced simulated wind gusts that pushed their vehicle out of the lane. On half the drives, the in-vehicle warning system was active, causing the seat to vibrate and warn the driver when the vehicle was travelling out of the lane; on the other half of drives, the system was inactive. The severity of the run-off-the-road event was measured by how long the driver was out of the lane and how far they travelled out of the lane. The study also looked at the effects of variation in the reliability of the warning system, the impacts of driver distraction, and whether the system causes drivers to become dependent on the lane-departure warnings.

Results reveal that the lane-departure warning system is effective, Cooper says. Researchers found that the time drivers spent outside their lane when no system was active was significantly longer than when it was active. One of the biggest predictors of how much time drivers would spend outside their lane was speed, suggesting that if drivers slow down, they can return to their lane more quickly if they unexpectedly exit the lane. Researchers also discovered that distracted driving posed significant risks.

“Drivers who actively engaged in a distraction task were more likely to travel greater distances when they unexpectedly leave their lane, which could put them at a greater risk of striking a bicyclist, highway worker, or roadside infrastructure,” Cooper says.

The study results did not show any indication that drivers became dependent or over-reliant on the warning system. In fact, when drivers drove without the lane-departure warning system after repeated exposure to it, they maintained significantly reduced time out of lane and distance out of lane—suggesting use of this lane-departure warning system may have significant long-term benefits.

Related Content

  • Bristol’s buses trial CycleEye detection system
    July 7, 2017
    Fusion Processing’s Jim Hutchinson looks at a two-year trial of the company’s cyclist detection system. Is cycling in a city dangerous? Well, that depends where you are and how you view statistics. Malmö is far more bike-friendly than Mumbai and the risk can either be perceived as small - one death per 29 million miles cycled in the UK in 2013 - or large - that equated to 109 deaths in the same year. Whatever your personal take on the data, the effect of these accidents can be felt indirectly too. News of c
  • The role of GIS in climate change resiliency
    May 29, 2014
    Climate change will pose global and local challenges and that includes risks to the transportation infrastructure. Climate change adaptation and resiliency has captured the attention of the transportation community for some time now. Because transportation infrastructure is often designed to last for 30, 50, or 100 years or even longer, transportation professionals are concerned not only about the impact on our existing investments, but also how to design more durable transportation systems for the future
  • Real-world testing is needed in wake of VW emissions scandal, says expert
    November 18, 2015
    As vehicle manufacturers, regulators and governments around the world seek solutions to prevent another emissions cheating scandal similar to the Volkswagen case, a major vehicle emissions inspection company has compiled and analysed on-road emissions data indicating that emissions violations of vehicles under real-world driving conditions may well go far beyond VW diesels. Opus Inspection says a two-pronged approach that continuously monitors real-world emissions is the only effective remedy. Lothar Ge
  • Report analyses multiple ITS projects to highlight cost and benefits
    March 16, 2015
    Every year in America cost benefit analysis is carried out on dozens of ITS installations and pilot studies and the findings, along with the lessons learned, are entered into the Department of Transportation’s (USDOT’s) web-based ITS Knowledge Resources database. This database holds more than 1,600 reports and periodically the USDOT reviews the material on file to draw conclusions from this wider body of evidence. It has just published one such review ITS Benefits, Costs, and Lessons Learned: 2014 Update Re