Skip to main content

V2V and V2I safety technology to launch at ITS world Congress

The ITS world Congress in Tokyo will see the launch of Autotalks’ vehicle-to-vehicle (V2V) and vehicle- to-infrastructure (V2I) safety technology. The Craton communication processor and the Pluton transceiver developed by Autotalks utilise powerful sensors capable of transmitting electronic signals between cars within a defined radius, for example 100 metres. Any vehicles fitted with the V2V technology will be able to analyse the relative speed and distances between any other vehicles within its predetermin
September 10, 2013 Read time: 1 min
The 6456 ITS World Congress in Tokyo will see the launch of 6765 Autotalks’ vehicle-to-vehicle (V2V) and vehicle- to-infrastructure (V2I) safety technology.

The Craton communication processor and the Pluton transceiver developed by Autotalks utilise powerful sensors capable of transmitting electronic signals between cars within a defined radius, for example 100 metres. Any vehicles fitted with the V2V technology will be able to analyse the relative speed and distances between any other vehicles within its predetermined radius. Once the sensors calculate that there may be even a remote risk of collision, it will emit an audio or visual warning signal to the driver via a dash- mounted GPS unit.

Autotalks anticipate seeing their accident prevention technology being in widespread commercial use by the beginning of 2015.

Related Content

  • May 13, 2016
    Smartphones smooth the journey for visually impaired
    Moves to make life easier and safer for vulnerable and impaired road users are gaining strength on both sides of the Atlantic. A recent webcast by the US Roadway Safety Institute, based at the University of Minnesota, showcased work in progress on a positioning and mapping methodology using Bluetooth and smartphone technologies to support situation awareness and wayfinding for the visually impaired.
  • June 14, 2013
    University develops rail crossing safety technology
    Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings. The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibili
  • July 31, 2012
    Debating the future development of ANPR
    What future is there for automatic number plate recognition? Will it be supplanted by electronic vehicle identification, or will continuing development maintain the technology's relevance? In recent years, digitisation and IP-based communication networks have allowed Automatic Number Plate Recognition (ANPR) to achieve ever-greater utility and a commensurate increase in deployments. But where does the technology go next - indeed, does it have a future in the face of the increasing use of, for instance, Dedi
  • November 27, 2013
    Advanced Driver Assistance Systems: a solution or another problem?
    Do Advanced Driver Assistance Systems represent a positive step forward for safety, or something of a safety risk? Jason Barnes discusses the issue with leading industry figures. Advanced Driver Assistance Systems (ADAS) are already common. Anti-lock brakes or electronic stability control are well understood and are either fitted as standard or frequently requested by new vehicle buyers. More advanced ADAS features are appearing on many top-end vehicles and the trickle-down has already started. Adaptive