Skip to main content

Update on autonomous cars: mastering city street driving

In a recent blog post, Google’s director of their self-driving car project, Chris Urmson has given an update on the technology that he says is better than the human eye. Google’s autonomous vehicles have logged nearly 700,000 miles on the streets of the company’s hometown, Mountain View, California. Urmson says a mile of city driving is much more complex than a mile of freeway driving, with hundreds of different objects moving according to different rules of the road in a small area. He claims that
May 14, 2014 Read time: 2 mins
In a recent blog post, 1691 Google’s director of their self-driving car project, Chris Urmson has given an update on the technology that he says is better than the human eye.

Google’s autonomous vehicles have logged nearly 700,000 miles on the streets of the company’s hometown, Mountain View, California.  Urmson says a mile of city driving is much more complex than a mile of freeway driving, with hundreds of different objects moving according to different rules of the road in a small area.

He claims that Google has improved its software so it can detect hundreds of distinct objects simultaneously—pedestrians, buses, a stop sign held up by a crossing guard, or a cyclist making gestures that indicate a possible turn. A self-driving vehicle can pay attention to all of these things in a way that a human physically can’t—and it never gets tired or distracted.

Urmson says: “As it turns out, what looks chaotic and random on a city street to the human eye is actually fairly predictable to a computer. As we’ve encountered thousands of different situations, we’ve built software models of what to expect, from the likely (a car stopping at a red light) to the unlikely (blowing through it). We still have lots of problems to solve, including teaching the car to drive more streets in Mountain View before we tackle another town, but thousands of situations on city streets that would have stumped us two years ago can now be navigated autonomously.”

With nearly 700,000 autonomous miles under its belt, Google is growing more optimistic that it is heading toward an achievable goal—a vehicle that operates fully without human intervention.

For more information on companies in this article

Related Content

  • Outlook good for transportation technology funding
    January 25, 2012
    Chris Cheever and Chris Thomas of Fontinalis Partners discuss the funding outlook for the ITS industry – where the money’s going to come from, and what needs to happen to facilitate change
  • Debating contactless toll charging by smartphone
    April 25, 2012
    Developments in the mass transit sector could provide indicators of potential for greater use of mobile consumer electronic devices for charging and tolling, according to Consult Hyperion’s Mike Burden. However, opinion among toll system suppliers is divided. Jason Barnes reports The combination of mass-market devices and their protocols, typified by smartphones featuring near field communication (NFC), points to some exciting cross-fertilisation possibilities in the charging and tolling sector, says Consul
  • The scourge of poor air quality and rising pollution levels and how they can be tackled
    December 20, 2021
    Arguably, air pollution is one of the greatest challenges facing our world today. It impacts people, economies and the environment. It is clear that policymakers must act swiftly to improve air quality. ITS has a huge role to play in providing solutions. Here, Swarco, as a solution provider, shares inside tips on how to use modern ITS to save lives, economies and the environment.
  • In-vehicle vision-based systems and autonomous vehicles
    January 11, 2013
    The Artificial Vision and Intelligent Systems Laboratory (VisLab) of Italy’s Parma University has built itself a fine pedigree in basic and applied research which has developed machine vision algorithms and intelligent systems for the automotive field. In 1998, a VisLab-equipped Lancia Thema named ‘Argo’ travelled along the famous Mille Miglia race route and completed 98 per cent of it autonomously using then-current technology. In 2005, VisLab provided the vision element of the Terramax, a collaborative un