Skip to main content

UK project demonstrates vehicle remote operation and autonomy for disabled drivers

The UK’s first demonstration of a remotely-operated autonomous vehicle service for people with reduced mobility has been successfully completed as part of the GATEway project (Greenwich Automated Transport Environment), led by TRL. Taking place at the InterContinental Hotel in the Royal Borough of Greenwich and completed using an autonomous-enabled Toyota Prius, the demonstration marked the end of a fortnight of testing in which GATEway partners Gobotix and O2 were able to successfully demonstrate remote
January 4, 2017 Read time: 3 mins
The UK’s first demonstration of a remotely-operated autonomous vehicle service for people with reduced mobility has been successfully completed as part of the GATEway project (Greenwich Automated Transport Environment), led by TRL.

Taking place at the InterContinental Hotel in the Royal Borough of Greenwich and completed using an autonomous-enabled 1686 Toyota Prius, the demonstration marked the end of a fortnight of testing in which GATEway partners Gobotix and O2 were able to successfully demonstrate remote operation of an unmanned vehicle.   

The demonstration aimed to show how near-market technology could benefit disabled and older drivers with limited mobility.  Using proof of concept technology developed by Gobotix, a wheelchair user drove himself to his final destination before disembarking. The driver then enlisted the support of a remote operator to park his vehicle using 3G and 4G cellular technology from telecommunications provider O2. For specific situations when cellular coverage would not be possible, e.g. underground car park, the user can also control the vehicle using an app on their own tablet device to manoeuvre or park it from a short distance using in-car wi-fi.

The technology is the product of more than two years’ work from experts at Gobotix and works on many vehicles which have increasingly common electronic controls and sensors. Using forward facing sensors, the software interprets images and communicates with the vehicle’s systems to enable remote operation by a computer or smartphone. Connectivity is provided by a machine-to-machine SIM that is able to tap into any network and works on 3G and 4G, while the video feed on the vehicle is used to facilitate obstacle detection and adjust speed accordingly.

The system is a first of its kind solution for remote operation and, unlike other autonomous technologies, will enable cars to be driven semi-autonomously in areas that have not been mapped.  It also enables remote recovery of fully automated vehicles should something go wrong, such as software faults or sensor breakdowns. Using the technology a human operator can intervene to remotely navigate vehicles back to a safe location or state of operation.

“Everyone is waiting for the arrival of fully automated vehicles, but there’s a lot that vehicle manufacturers can be doing already with existing technology to help improve accessibility and mobility for older and disabled drivers, ” said Dr Ben Davis, technical director, Gobotix.

“Many modern cars can be adapted so that they are driveable by a remote pilot and what we’ve demonstrated as part of GATEway is proof of that.  By offering a remote operation service, we can remove common concerns around boarding and alighting. It’s about empowering those with reduced mobility to retain independence through the use of technology.”

For more information on companies in this article

Related Content

  • Fully autonomous vehicles ‘spur LiDAR sensors mass adoption’
    January 26, 2017
    Cost-effective, high-resolution light detection and ranging (LiDAR) sensors capable of long-range object detection will be necessary for high to fully-automated driving applications. Demand for 3D mapping and imaging, better overall performance, automated processing of graphic data gathering and self-sufficient sensor with best-in-class performance in low-visibility conditions are factors driving the development and adoption of LiDAR sensors within the advanced driver assistance systems (ADAS) sensor suite
  • Alan Turing Institute and Toyota to modernise traffic management
    June 11, 2018
    The UK’s Alan Turing Institute and the Toyota Mobility Foundation are partnering in an 18-month project which they say is intended to modernise traffic management. They will collaborate with data providers and government managers to look at the way cities could run in future. Potential outcomes include the integration of an artificial intelligence (AI) system for traffic control, a platform for interactive data manipulation to monitor traffic behaviour and developing mechanisms for fleet operators and ci
  • Videalert provides full time enforcement with part time workload
    March 19, 2014
    Videalert says its algorithms on automated enforcement can reduce the workload on staff while providing an effective deterrent to offenders. Colin Sowman reports. While members of the public may believe that the enforcement of parking regulations, bus lanes and box junctions has no practical benefit and is purely a money-making operation, for many authorities the opposite is true. Enforcement is a loss-making but vital exercise as illegally parked vehicles create obstructions and dangers leading to gridl
  • innovITS ADVANCE facility transferred to MIRA
    April 12, 2013
    The operation of the UK’s innovITS-ADVANCE facility, dedicated to the testing and demonstration of cooperative vehicle infrastructure systems, has been transferred to automotive design and development organisation MIRA. The transition is being made to provide the most sustainable future for this important ITS resource and assure its continuing success. In the five years since its inception, innovITS-ADVANCE has delivered a world class facility that is purpose-built for testing telematics systems. The comb