Skip to main content

U-M offers open-access automated cars to advance driverless research

The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground. These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later. The op
November 22, 2016 Read time: 3 mins
The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground.

These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later.

The open CAVs are based at Mcity, U-M's simulated urban and suburban environment for testing automated and connected vehicles. While other institutions may offer similar research vehicles, U-M is the only one that also operates a high-tech, real-world testing facility. While auto companies are making key advances in autonomous vehicle development, they are doing so on proprietary systems.

Researchers and technology developers outside the auto companies with ideas for improving components or system controls have no way to assess whether they'll work in the real world. Students have limited options for studying connected and automated systems.

By providing a platform for faculty, students, industry partners and startups to test connected and automated vehicle technologies, U-M believes open CAVs will break down technology barriers and speed up innovation.

The vehicles are being made available by U-M’s Mobility Transformation Center. MTC, which operates Mcity and include a Lincoln MKZ sedan, powered by PolySync's autonomy platform that provides the foundation for rapid driverless vehicle development. Two Kia Soul compact crossovers, equipped with a new PolySync Open Source Car Control kit that enables complete ‘drive by-wire’ control, will join the Lincoln.

MTC will add dedicated short-range communications capabilities to the vehicles to support the intersection of connected and automated vehicle control and allow development of connected vehicle applications. With such capabilities, vehicles can anonymously and securely ‘talk’ to each other via wireless communications similar to wi-fi to improve safety.

The combination will be "transformational," said Carrie Morton, deputy director of MTC, a public-private partnership that involves more than 60 industry partners.

"By providing a platform for faculty, students, industry partners and startups to test connected and automated vehicle technologies, open CAVs will break down technology barriers and dramatically speed up innovation," Morton said. "We're democratising access to automated vehicle technology for research and education."

From a research perspective, the open CAVs are completely adaptable, said MTC director Huei Peng, the Roger L. McCarthy Professor of Mechanical Engineering. "Researchers can bring in their own hardware—swap out any sensor they'd like. Or they can create advanced controls to take advantage of various sensor technologies already on the vehicles. And they have the ability to explore how it works in a real mobility system at Mcity."

Related Content

  • November 27, 2017
    Four expansions added to Virginia’s Smart Road to test AVs in urban, rural and residential environments
    The Virginia Tech Transportation Institute and the Virginia Department of Transportation (VDoT) has unveiled four expansions to the Virginia Smart Road to accelerate advanced-vehicle testing and explore how automated and autonomous vehicles (AVs) will function on U.S. roadways including edge-and-corner environments. Two new facilities have opened for testing: The Surface Street Expansion, an urban test bed, and the Live Roadway Connector, which connects the Smart road to the U.S. Route 460-Business,
  • July 23, 2012
    Open communication platform to support cooperative infrastructure
    Within the European Commission's CVIS project, work is going on to shrink the open vehicle communication platform to make it more market-ready and to remove barriers to the creation of appropriate applications by those external to the project. Here, ERTICO's Zeljko Jeftic and Paul Kompfner and Q-Free's Knut Evensen discuss progress. Development of the open communication platform which will support the various applications developed by the European Commission's (EC's) Cooperative Vehicle-Infrastructure Syste
  • December 1, 2017
    Loughborough University to develop test bed for connected /AVs
    Loughborough University, the academic partner to London’s Smart Mobility Lab, has been awarded £500,000 ($676,000) as part of the project to develop a research programme enabling a real-world test bed for connected and autonomous vehicles. It will conduct research and development into connected roads, alongside other contributions including a vehicle fleet for experimental purposes; cooperative intersection management systems; high accuracy GPS; 5G and large-scale vehicle to anything communication capabilit
  • June 10, 2021
    Robotic Research: harnessing AV potential
    Robotic Research is leading in AV R&D, from work with the US Army to enabling the first automated BRT line in North America: Gordon Feller assesses what the company is doing