Skip to main content

U-M offers open-access automated cars to advance driverless research

The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground. These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later. The op
November 22, 2016 Read time: 3 mins
The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground.

These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later.

The open CAVs are based at Mcity, U-M's simulated urban and suburban environment for testing automated and connected vehicles. While other institutions may offer similar research vehicles, U-M is the only one that also operates a high-tech, real-world testing facility. While auto companies are making key advances in autonomous vehicle development, they are doing so on proprietary systems.

Researchers and technology developers outside the auto companies with ideas for improving components or system controls have no way to assess whether they'll work in the real world. Students have limited options for studying connected and automated systems.

By providing a platform for faculty, students, industry partners and startups to test connected and automated vehicle technologies, U-M believes open CAVs will break down technology barriers and speed up innovation.

The vehicles are being made available by U-M’s Mobility Transformation Center. MTC, which operates Mcity and include a Lincoln MKZ sedan, powered by PolySync's autonomy platform that provides the foundation for rapid driverless vehicle development. Two Kia Soul compact crossovers, equipped with a new PolySync Open Source Car Control kit that enables complete ‘drive by-wire’ control, will join the Lincoln.

MTC will add dedicated short-range communications capabilities to the vehicles to support the intersection of connected and automated vehicle control and allow development of connected vehicle applications. With such capabilities, vehicles can anonymously and securely ‘talk’ to each other via wireless communications similar to wi-fi to improve safety.

The combination will be "transformational," said Carrie Morton, deputy director of MTC, a public-private partnership that involves more than 60 industry partners.

"By providing a platform for faculty, students, industry partners and startups to test connected and automated vehicle technologies, open CAVs will break down technology barriers and dramatically speed up innovation," Morton said. "We're democratising access to automated vehicle technology for research and education."

From a research perspective, the open CAVs are completely adaptable, said MTC director Huei Peng, the Roger L. McCarthy Professor of Mechanical Engineering. "Researchers can bring in their own hardware—swap out any sensor they'd like. Or they can create advanced controls to take advantage of various sensor technologies already on the vehicles. And they have the ability to explore how it works in a real mobility system at Mcity."

Related Content

  • Opening the closed-loop to realise ITS benefits
    April 8, 2014
    Jim Leslie, manager of ITS applications engineering at the Econolite Group looks at practical steps in transitioning from closed-loop masters to a centralised ATMS. Not many years ago the standard method of coordinating signalised intersections in local areas was to install an on-street master – each of which monitored and controlled a limited number of signal controllers or intersections as a closed-loop system. And, to a certain extent, each closed-loop system was autonomous from others deployed by the ag
  • New IBM study details the future of automotive industry
    January 19, 2015
    IBM has revealed results of its new Automotive 2025 Global Study, outlining an industry ripe for disruptive changes that are breaking down borders of the automotive network. The study forecasts that while the automotive industry will offer a greater personalised driving experience by 2025, fully autonomous vehicles or fully automated driving will not be as commonplace as some think. The report also indicates that consumers not only want to drive cars; they want the opportunity to innovate and co-create t
  • Demonstration of first German A9 motorway safety project
    November 10, 2015
    In the first project of the ‘digital A9 motorway test bed’ to show how vehicles on a motorway can share hazard information, Continental, Deutsche Telekom, Fraunhofer ESK and Nokia Networks have carried out a real-time demonstration of communication between vehicles via the Deutsche Telecom LTE cell network. The project, which aims to improve road safety and traffic management, involved upgrading Deutsche Telekom's existing LTE network at sections of the A9 motorway test bed with Nokia Networks’ mobile e
  • Is DSRC progressive enough for future connected mobility?
    February 3, 2012
    Dedicated Short Range Communications technology, says Cisco's Paul Brubaker, is not by itself progressive enough to sustain long-term innovation in the connected mobility environment - and yet IPv6 and other developments remain largely ignored by policy-makers