Skip to main content

U-M offers open-access automated cars to advance driverless research

The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground. These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later. The op
November 22, 2016 Read time: 3 mins
The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground.

These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later.

The open CAVs are based at Mcity, U-M's simulated urban and suburban environment for testing automated and connected vehicles. While other institutions may offer similar research vehicles, U-M is the only one that also operates a high-tech, real-world testing facility. While auto companies are making key advances in autonomous vehicle development, they are doing so on proprietary systems.

Researchers and technology developers outside the auto companies with ideas for improving components or system controls have no way to assess whether they'll work in the real world. Students have limited options for studying connected and automated systems.

By providing a platform for faculty, students, industry partners and startups to test connected and automated vehicle technologies, U-M believes open CAVs will break down technology barriers and speed up innovation.

The vehicles are being made available by U-M’s Mobility Transformation Center. MTC, which operates Mcity and include a Lincoln MKZ sedan, powered by PolySync's autonomy platform that provides the foundation for rapid driverless vehicle development. Two Kia Soul compact crossovers, equipped with a new PolySync Open Source Car Control kit that enables complete ‘drive by-wire’ control, will join the Lincoln.

MTC will add dedicated short-range communications capabilities to the vehicles to support the intersection of connected and automated vehicle control and allow development of connected vehicle applications. With such capabilities, vehicles can anonymously and securely ‘talk’ to each other via wireless communications similar to wi-fi to improve safety.

The combination will be "transformational," said Carrie Morton, deputy director of MTC, a public-private partnership that involves more than 60 industry partners.

"By providing a platform for faculty, students, industry partners and startups to test connected and automated vehicle technologies, open CAVs will break down technology barriers and dramatically speed up innovation," Morton said. "We're democratising access to automated vehicle technology for research and education."

From a research perspective, the open CAVs are completely adaptable, said MTC director Huei Peng, the Roger L. McCarthy Professor of Mechanical Engineering. "Researchers can bring in their own hardware—swap out any sensor they'd like. Or they can create advanced controls to take advantage of various sensor technologies already on the vehicles. And they have the ability to explore how it works in a real mobility system at Mcity."

Related Content

  • Audi Urban Intelligent Assist research programme launched
    May 21, 2012
    A new research initiative launched by Audi, its electronics research laboratory in Silicon Valley and four top US universities aims to develop technologies focused on easing the congestion, dangers and inconveniences that often confront drivers in the world's biggest cities. The new three-year Audi Urban Intelligent Assist research initiative aims to take connected car, driver assistance and infrastructure electronics to the next level of providing detailed information so motorists have a better sense of th
  • Visteon to provide communications equipment for US vehicle-to-vehicle pilot program
    October 4, 2012
    Automotive supplier Visteon Corporation, in collaboration with Cohda Wireless, is providing vehicle-to-vehicle (V2V) communications equipment for the US Department of Transportation safety pilot program. The project potentially offers significant improvements in driver awareness including collision, hazardous road and curve speed warnings and traffic flow information. The safety pilot program is led by the University of Michigan Transportation Research Institute and will integrate 5.9 GHz dedicated short ra
  • Induct introduces the Navia fully-electric driverless shuttle
    February 12, 2013
    French mobility solutions specialist Induct recently announced its first delivery of Navia, the self-driving electric shuttle developed under a partnership with Switzerland’s Ecole Polytechnique Fédérale de Lausanne (EPFL). According to Induct, Navia is the first automated electric shuttle offering an environment-friendly alternative to public transport and private cars in urban areas. The automated driverless electric vehicle carries up to eight passengers at a maximum speed of 20 km/h, and was designed t
  • Tolling systems - interoperability is key
    January 25, 2012
    Is US tolling as fragmented and divided as some would have you believe? And are the technology suppliers so very entrenched? ITS International spoke to the market's leading suppliers. A few years back, the prevalent view was that the North American tolling market was characterised by fragmented, proprietary solutions, each existing in splendid isolation. The reality is that a combination of pragmatism and good old market forces have seen some concerted moves made towards interoperability in many areas.