Skip to main content

U-M offers open-access automated cars to advance driverless research

The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground. These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later. The op
November 22, 2016 Read time: 3 mins
The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground.

These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later.

The open CAVs are based at Mcity, U-M's simulated urban and suburban environment for testing automated and connected vehicles. While other institutions may offer similar research vehicles, U-M is the only one that also operates a high-tech, real-world testing facility. While auto companies are making key advances in autonomous vehicle development, they are doing so on proprietary systems.

Researchers and technology developers outside the auto companies with ideas for improving components or system controls have no way to assess whether they'll work in the real world. Students have limited options for studying connected and automated systems.

By providing a platform for faculty, students, industry partners and startups to test connected and automated vehicle technologies, U-M believes open CAVs will break down technology barriers and speed up innovation.

The vehicles are being made available by U-M’s Mobility Transformation Center. MTC, which operates Mcity and include a Lincoln MKZ sedan, powered by PolySync's autonomy platform that provides the foundation for rapid driverless vehicle development. Two Kia Soul compact crossovers, equipped with a new PolySync Open Source Car Control kit that enables complete ‘drive by-wire’ control, will join the Lincoln.

MTC will add dedicated short-range communications capabilities to the vehicles to support the intersection of connected and automated vehicle control and allow development of connected vehicle applications. With such capabilities, vehicles can anonymously and securely ‘talk’ to each other via wireless communications similar to wi-fi to improve safety.

The combination will be "transformational," said Carrie Morton, deputy director of MTC, a public-private partnership that involves more than 60 industry partners.

"By providing a platform for faculty, students, industry partners and startups to test connected and automated vehicle technologies, open CAVs will break down technology barriers and dramatically speed up innovation," Morton said. "We're democratising access to automated vehicle technology for research and education."

From a research perspective, the open CAVs are completely adaptable, said MTC director Huei Peng, the Roger L. McCarthy Professor of Mechanical Engineering. "Researchers can bring in their own hardware—swap out any sensor they'd like. Or they can create advanced controls to take advantage of various sensor technologies already on the vehicles. And they have the ability to explore how it works in a real mobility system at Mcity."

Related Content

  • Looking for the next generation of smart city innovators
    July 24, 2015
    With the aim of fostering innovation and developing the next generation of technology talent, GE Lighting has become the founding sponsor of a unique new urban regeneration initiative, the Intelligent Community Challenge. Centred on a design competition, the initiative aims to crowd source new perspectives and fresh ideas on key urban challenges such as public safety, crime, social inclusion, traffic and pollution, by uniting local councils, communities and university students to develop intelligent and inn
  • Transdev and Delphi team up to develop on-demand autonomous transportation
    June 12, 2017
    Mobility services provider Transdev is partnering with Delphi Automotive to develop a global, fully automated, mobility-on-demand (AMoD) transport system. The system will utilise Transdev’s universal routing engine (URE) and Delphi’s automated driving platform, the Centralised Sensing, Planning and Localisation (CSLP) platform which Delphi is developing in partnership with Mobileye.
  • Autonomous vehicle takes to the road in UK
    April 5, 2017
    An autonomous shuttle is to take to the road as part of the UK GATEway Project (Greenwich Automated Transport Environment) research into public acceptance of, and attitudes towards, driverless vehicles. In the latest phase of the GATEway Project a prototype shuttle will begin driverless navigation of a 2km route around the Greenwich Peninsula, using advanced sensors and state-of-the-art autonomy software to detect and avoid obstacles whilst carrying members of the public participating in the research stu
  • Hayden AI & Snapper Services keep their eyes on the road
    August 29, 2024
    Snapper Services CEO Miki Szikszai and Chris Carson, CEO of Hayden AI, tell Adam Hill about synergy and partnership – and how to make use of data once you’ve gathered it