Skip to main content

TRW develops second generation scalable ACUs

TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.
March 22, 2012 Read time: 2 mins
601 TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.

Ed Carpenter, vice president, TRW Electronics, said: "Our second generation scalable ACU offers emerging market OEMs the opportunity to fit their vehicles with advanced safety equipment and the new units will include the option to integrate the inertial measurement unit (IMU) into the ACU to sense vehicle yaw, a key technology for the growing electronic stability control (ESC) market."

The standard ACU is configured for cost-effective frontal crash protection with one to four squib outputs and no satellite interfaces, but provides the flexibility to be upgraded for use in an enhanced safety system.

The enhanced ACU supports up to twelve squibs and four satellite interfaces to provide front and side impact detection and protection, and is designed to handle the additional functional requirements to meet European and / or North American safety requirements. This includes the option to add an inertial measurement unit to support active safety systems such as ESC.

With the updated design, costs have been further reduced for the enhanced ACU variants with 8 squibs or more, providing vehicle manufacturers greater flexibility and competitiveness. To reduce tooling and engineering costs and design complexity further, the scalable ACU family uses a standardized mechanical design including the connector. This enables economic production of ACUs even for relatively small OEMs with low volume platforms and/ or low airbag fitment rates.

For more information on companies in this article

Related Content

  • OmniVision's automotive image sensors win AEC-Q100 qualification
    March 22, 2012
    OmniVision Technologies, a developer of advanced digital imaging solutions, has announced that its flagship automotive image sensors, the OV10630 and the OV10635, have both received AEC-Q100 Grade 2 qualifications, meeting the high standards of quality and performance for automotive applications. Additionally, the company announced that both sensors are in volume production and will be shipping to multiple automotive customers. The two sensors are similar in functionality and performance but are integrated
  • Managing road hazards is key to £90,000 competition
    March 22, 2024
    England's National Highways has chosen nine companies to receive innovation funding
  • Cisco, NXP invest in Cohda Wireless to enable the connected car
    January 7, 2013
    In a partnership that they say will advance intelligent transportation systems (ITS) and car-to-X communications, US-headquartered IT provider Cisco and Dutch semiconductor supplier NXP Semiconductors are to invest in wireless communications specialist Cohda Wireless. The three companies will apply their collective expertise and technologies to help automotive OEMs, suppliers, enterprises and consumers to connect vehicles with ITS infrastructure. This will be spearheaded by producing the first automotive-q
  • Embedded connectivity delivers real time travel information
    February 3, 2012
    Ton Brand describes the GSM Association's Embedded mTelematics programme. As the world's roads become increasingly crowded, consumers and businesses are demanding better real-time information to help them both avoid traffic congestion and make smarter use of public transport. Embedding mobile connectivity directly into vehicles can enable drivers and passengers to see live traffic flows in their localities, as well as the expected arrival time of the next bus, ferry or tram