Skip to main content

TRW develops second generation scalable ACUs

TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.
March 22, 2012 Read time: 2 mins
601 TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.

Ed Carpenter, vice president, TRW Electronics, said: "Our second generation scalable ACU offers emerging market OEMs the opportunity to fit their vehicles with advanced safety equipment and the new units will include the option to integrate the inertial measurement unit (IMU) into the ACU to sense vehicle yaw, a key technology for the growing electronic stability control (ESC) market."

The standard ACU is configured for cost-effective frontal crash protection with one to four squib outputs and no satellite interfaces, but provides the flexibility to be upgraded for use in an enhanced safety system.

The enhanced ACU supports up to twelve squibs and four satellite interfaces to provide front and side impact detection and protection, and is designed to handle the additional functional requirements to meet European and / or North American safety requirements. This includes the option to add an inertial measurement unit to support active safety systems such as ESC.

With the updated design, costs have been further reduced for the enhanced ACU variants with 8 squibs or more, providing vehicle manufacturers greater flexibility and competitiveness. To reduce tooling and engineering costs and design complexity further, the scalable ACU family uses a standardized mechanical design including the connector. This enables economic production of ACUs even for relatively small OEMs with low volume platforms and/ or low airbag fitment rates.

For more information on companies in this article

Related Content

  • TRL: In-vehicle tech is developing – but the driver isn’t
    August 19, 2019
    The evidence base for distracted driving has failed to keep up with technological developments, argue TRL’s Neale Kinnear and Paul Jackson. New research is urgently needed
  • Getting C/AVs from pipedream to reality
    October 17, 2019
    The UK government has suggested that driverless cars could be on the roads by 2021. But designers and engineers are grappling with a number of difficult issues, muses Chris Hayhurst of MathWorks Earlier this year, the UK government made the bold statement that by 2021, driverless cars will be on the UK’s roads. But is this an achievable reality? Driverless technology already has its use cases on our roads, with levels of autonomy ranked on a scale. At one end of the spectrum, level 1 is defined by th
  • Progress of ICT transport research projects
    February 3, 2012
    Juhani Jääskeläinen, head of the ICT for Transport Unit, DG Information Society and Media, European Commission, details the results of Call 4 for research projects in ICT for transport. Since the closure of the call and evaluation process during the summer of last year the European Commission (EC) has been negotiating and signing contracts with projects which were selected from proposals submitted to Call 4 of the 7th Framework Programme (FP7) in the area of Information and Communication Technology (ICT) fo
  • IT security? Get your head in the cloud
    January 23, 2020
    Cloud-based operations have been around for a decade or so - and Andy Souders of All Traffic Solutions suggests they are increasingly viable solutions for the transportation sector