Skip to main content

TRW develops second generation scalable ACUs

TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.
March 22, 2012 Read time: 2 mins
601 TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.

Ed Carpenter, vice president, TRW Electronics, said: "Our second generation scalable ACU offers emerging market OEMs the opportunity to fit their vehicles with advanced safety equipment and the new units will include the option to integrate the inertial measurement unit (IMU) into the ACU to sense vehicle yaw, a key technology for the growing electronic stability control (ESC) market."

The standard ACU is configured for cost-effective frontal crash protection with one to four squib outputs and no satellite interfaces, but provides the flexibility to be upgraded for use in an enhanced safety system.

The enhanced ACU supports up to twelve squibs and four satellite interfaces to provide front and side impact detection and protection, and is designed to handle the additional functional requirements to meet European and / or North American safety requirements. This includes the option to add an inertial measurement unit to support active safety systems such as ESC.

With the updated design, costs have been further reduced for the enhanced ACU variants with 8 squibs or more, providing vehicle manufacturers greater flexibility and competitiveness. To reduce tooling and engineering costs and design complexity further, the scalable ACU family uses a standardized mechanical design including the connector. This enables economic production of ACUs even for relatively small OEMs with low volume platforms and/ or low airbag fitment rates.

Related Content

  • November 17, 2015
    UN vehicle regulations ‘could prevent deaths and injuries in Brazil’
    A new research report from the UK’s Transport Research Laboratory (TRL) has revealed that 34,000 Brazilian lives could be saved and 350,000 serious injuries prevented by 2030, if UN vehicle safety regulations were adopted and car manufacturers sought to achieve higher ratings in the Latin NCAP crash test programme. Published on the eve of the second High Level Conference on Road Safety in Brazil, the independent study, which was commissioned by Global NCAP, highlights the gap between the regulated vehicl
  • July 24, 2012
    In-vehicle safety standard released for consultation
    The new ISO 26262 standard for safety-related vehicle systems is now available for comment. MIRA's David Ward talks to ITS International about what the standard will mean for vehicle and road safety in the future. The publication on 8 July this year of ISO 26262 as a Draft International Standard (DIS) marks an important progression for the automotive - and, in time, the cooperative infrastructure - industries. A couple of years from now, automotive OEMs will be able to subscribe to a unifying standard for s
  • January 6, 2023
    CES 2023: NXP chip for ADAS & AVs
    Radar one-chip family allows long-range detection/separation of small and larger objects
  • September 8, 2015
    Over-the-air software updates to benefit for automotive market, IHS says
    While quite common in smartphones and personal computers, remote over-the-air (OTA) software updates are still only in their infancy in the automotive space, according to a new report from IHS Automotive. The report finds that OTA software updates will eventually be a big benefit for the automotive industry due to their capacity to reduce warranty costs, potentially increase overall completion rates for software-related recalls, improve customer satisfaction by eliminating trips to the dealership for so