Skip to main content

TRW develops second generation scalable ACUs

TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.
March 22, 2012 Read time: 2 mins
601 TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.

Ed Carpenter, vice president, TRW Electronics, said: "Our second generation scalable ACU offers emerging market OEMs the opportunity to fit their vehicles with advanced safety equipment and the new units will include the option to integrate the inertial measurement unit (IMU) into the ACU to sense vehicle yaw, a key technology for the growing electronic stability control (ESC) market."

The standard ACU is configured for cost-effective frontal crash protection with one to four squib outputs and no satellite interfaces, but provides the flexibility to be upgraded for use in an enhanced safety system.

The enhanced ACU supports up to twelve squibs and four satellite interfaces to provide front and side impact detection and protection, and is designed to handle the additional functional requirements to meet European and / or North American safety requirements. This includes the option to add an inertial measurement unit to support active safety systems such as ESC.

With the updated design, costs have been further reduced for the enhanced ACU variants with 8 squibs or more, providing vehicle manufacturers greater flexibility and competitiveness. To reduce tooling and engineering costs and design complexity further, the scalable ACU family uses a standardized mechanical design including the connector. This enables economic production of ACUs even for relatively small OEMs with low volume platforms and/ or low airbag fitment rates.

For more information on companies in this article

Related Content

  • Hard data supports traffic monitoring
    April 30, 2024
    A collaboration between AGD Systems and North Line Canada has demonstrated the value of traffic experts putting their heads together to improve pedestrian safety
  • Machine vision takes ITS further than the eye can see
    January 5, 2016
    Vitronic’s John Yalda looks at how machine vision has become an integral part of many ITS deployments and why it complements, rather than replaces, ANPR. New and conventional business concepts like online shopping and mail order business are becoming more established in the cultures of fast-growing economies and increasing the demand for flexibility in the freight transportation and logistics industry. Road transport has become the preferred infrastructure for freight forwarding and several studies predict
  • Priority for safety and interoperability, need for DSRC
    July 18, 2012
    Justin McNew, Chief Technology Officer, Kapsch TrafficCom Inc., USA offers his opinion of where 5.9GHz DSRC technology will head in the coming years. The debate ranges back and forth over the most suitable technological solution for future tolling and charging in the US. However, the coming trend is common cooperative infrastructure: instrumented roads and vehicles with the capacity to communicate with each other over all manner of safety, mobility and traveller applications, many of which will involve fina
  • Wireless video interface for automated traffic tolling
    July 16, 2014
    Canadian video interface supplier Pleora Technologies has unveiled the world’s first embedded hardware solution for delivering real-time video over a standard IEEE 802.11 wireless link. With Pleora's iPORT NTx-W embedded video interface, designers can quickly and easily integrate high-speed wireless connectivity into imaging systems where video cabling creates complexity, cost, and usability challenges. The device streams uncompressed video with low, consistent latency at sustained throughputs of more t