Skip to main content

TRW develops second generation scalable ACUs

TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.
March 22, 2012 Read time: 2 mins
601 TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.

Ed Carpenter, vice president, TRW Electronics, said: "Our second generation scalable ACU offers emerging market OEMs the opportunity to fit their vehicles with advanced safety equipment and the new units will include the option to integrate the inertial measurement unit (IMU) into the ACU to sense vehicle yaw, a key technology for the growing electronic stability control (ESC) market."

The standard ACU is configured for cost-effective frontal crash protection with one to four squib outputs and no satellite interfaces, but provides the flexibility to be upgraded for use in an enhanced safety system.

The enhanced ACU supports up to twelve squibs and four satellite interfaces to provide front and side impact detection and protection, and is designed to handle the additional functional requirements to meet European and / or North American safety requirements. This includes the option to add an inertial measurement unit to support active safety systems such as ESC.

With the updated design, costs have been further reduced for the enhanced ACU variants with 8 squibs or more, providing vehicle manufacturers greater flexibility and competitiveness. To reduce tooling and engineering costs and design complexity further, the scalable ACU family uses a standardized mechanical design including the connector. This enables economic production of ACUs even for relatively small OEMs with low volume platforms and/ or low airbag fitment rates.

For more information on companies in this article

Related Content

  • Securing V2X communications
    June 6, 2016
    Cybersecurity developments are moving fast in the automotive sector, but they’re a significant hurdle for the roll-out of C-ITS applications. Jon Masters reports. In the wake of the high-profile hacking of the Jeep Cherokee and problems like the flaw in the Nissan Leaf’s companion app that could compromise the security of data about recent journeys, initiatives linked to vehicle cybersecurity seem to be moving rapidly.
  • Road design as a primary aid to speed enforcement?
    January 30, 2012
    Letty Aarts, senior researcher, SWOV institute for road safety research, the Netherlands, discusses how road design can act as a primary aid to speed enforcement
  • Travel data critical to traffic management, traveller information
    January 31, 2012
    The ability to bundle together travel data from several discrete sources and fuse it to give a more comprehensive overview of events to stakeholders is the key aim of Viajeo, which is conducting trials in several cities around the world. Here, Ertico's Yanying Li writes about the project in more detail
  • Global toll revenues $8.5bn while technology ‘battles’ continue
    April 9, 2014
    ABI Research’s Dominique Bonte talks to Jason Barnes about trends in tolling and how a wider appreciation of technology options is sorely needed. Global Electronic Toll Collection (ETC) solution revenues will grow to $8.5bn by 2018, with ETC becoming a main source of funding for both Intelligent Transport Systems (ITS) and Vehicle-to-X (V2X) cooperative infrastructures, according to a new report from ABI Research (Chart 1). But, says the report’s author, ABI Research vice president and practice director Dom