Skip to main content

TRW develops second generation scalable ACUs

TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.
March 22, 2012 Read time: 2 mins
601 TRW Automotive Holdings is developing its second generation scalable airbag control unit (ACU) designed for the growing low-cost vehicle and emerging markets. This intelligent solution allows the ACU to be adapted within a vehicle platform to offer two options – standard and enhanced – for models sold within emerging territories and also for those exported to developed markets.

Ed Carpenter, vice president, TRW Electronics, said: "Our second generation scalable ACU offers emerging market OEMs the opportunity to fit their vehicles with advanced safety equipment and the new units will include the option to integrate the inertial measurement unit (IMU) into the ACU to sense vehicle yaw, a key technology for the growing electronic stability control (ESC) market."

The standard ACU is configured for cost-effective frontal crash protection with one to four squib outputs and no satellite interfaces, but provides the flexibility to be upgraded for use in an enhanced safety system.

The enhanced ACU supports up to twelve squibs and four satellite interfaces to provide front and side impact detection and protection, and is designed to handle the additional functional requirements to meet European and / or North American safety requirements. This includes the option to add an inertial measurement unit to support active safety systems such as ESC.

With the updated design, costs have been further reduced for the enhanced ACU variants with 8 squibs or more, providing vehicle manufacturers greater flexibility and competitiveness. To reduce tooling and engineering costs and design complexity further, the scalable ACU family uses a standardized mechanical design including the connector. This enables economic production of ACUs even for relatively small OEMs with low volume platforms and/ or low airbag fitment rates.

For more information on companies in this article

Related Content

  • MaaS will be adopted quicker in Europe than in the US: here’s why
    December 5, 2018
    A new report suggests that MaaS will be implemented more quickly in Europe than in the US – but why should this be? Ben Spencer examines the arguments
  • Assessing the potential of in-vehicle enforcement systems
    December 4, 2012
    Jason Barnes considers the social and ethical ramifications of using in-vehicle safety technologies to fulfil enforcement functions. Although policy documents often imply close correlation between enforcement, compliance and safety – in part, as a counter to accusations that enforcement is rather more concerned with revenue generation – there is a noticeable reluctance among policy makers and auto manufacturers to exploit in-vehicle safety systems for enforcement applications. From a technical perspective t
  • Telensa enhances street light control
    November 13, 2014
    Telensa has enhanced its PLANet SmartGrid street light control system by adding an on-board GPS module and the new NEMA 7-pin connector to its telecell options.
  • Moxa's ToughNet
    March 12, 2012
    Moxa has announced a new series of EN50155 Ethernet switches which satisfy the strictest railway industry standards. To deliver the tough performance required by complex railway and road communication systems, ToughNet series products have rounded M12 connectors to endure and withstand persistent and frequent vibration or shock. The company says the design concept emphasises the highest level of reliability and availability by offering strong EMI immunity, a -40 to +75°C operating temperature range, IP54/67