Skip to main content

TRC launches smart mobility advanced research and test centre

The US state of Ohio and the Ohio State University are funding the US$45 million Phase 1 expansion of the Transportation Research Center's (TRC) new 540-acre SMART (Smart Mobility Advanced Research and Test) Center. To to be built within the 4,500 acres of the TRC’s independent automotive testing facility and proving grounds, SMART aims to be a hub for testing of automated and autonomous vehicles, designed to enable car manufacturers and suppliers to expand their testing. Phase 1 of the expansion will in
January 27, 2017 Read time: 2 mins
The US state of Ohio and the Ohio State University are funding the US$45 million Phase 1 expansion of the Transportation Research Center's (TRC) new 540-acre SMART (Smart Mobility Advanced Research and Test) Center. To to be built within the 4,500 acres of the TRC’s independent automotive testing facility and proving grounds, SMART aims to be a hub for testing of automated and autonomous vehicles, designed to enable car manufacturers and suppliers to expand their testing.

Phase 1 of the expansion will include a flexible platform and infrastructure; a high-speed intersection; a flexible test platform; an urban network of intersections, roundabouts, traffic signals; a rural network including wooded roads, neighbourhood network and a SMART Center support building.

TRC has been testing different types of vehicles and components on its 4,500-acre facility for more than 40 years, including testing automated and autonomous vehicles over the last two decades.  It provides a convenient location to safely test new technologies before their use on city streets and highways in support of Columbus's $140 million 324 US Department of Transportation (USDOT) Smart City project.

Funding efforts are underway for Phases 2 and 3 of the. Phase 2 will focus on the world's first indoor test facility, which will enable rigorous testing of highly automated vehicles in severe weather conditions.  Phase 3 will include a six-lane high-speed highway, with on and off ramps and underpasses, to support the testing of vehicle swarming and truck platooning.

Related Content

  • October 26, 2017
    USDoT looks at the costs and potential benefits of connected vehicles
    David Crawford looks at latest lessons learned from the trials of connected vehicles in the US. The progress of connected vehicle (CV) technologies takes centre stage among the hot topics highlighted in the September 2017 edition – the first since 2014 – of the ‘ITS Benefits, Costs and Lessons Learned’ survey from the US ITS Joint Program Office (JPO). The organisation is an arm of the US Department of Transportation (USDoT).
  • February 21, 2023
    Full analysis: Massive US EV infrastructure plan
    The White House has announced a huge financial boost, new standards, and major progress for a made-in-America national network of EV chargers to support the future of US EV charging
  • August 13, 2015
    Syracuse models post-industrial revival for US cities
    A connective corridor in Syracuse, New York State, could be a model for other post-industrial cities, as David Crawford discovers. The aim of the city of Syracuse’ 5.6km-long Connective Corridor in Onandaga County in upstate New York is to create a model ‘complete street’ for use in wider regeneration schemes. Key transport-sector components are traffic calming, high-quality transit with accessible passenger information, plus walkability and bike-friendliness.
  • January 25, 2017
    Texas alliance designated as US DOT automated vehicle proving ground
    The Texas Automated Vehicle (AV) Proving Ground is one of ten sites designated as an automated vehicle proving ground. Formed by an alliance that includes the Southwest Research Institute (SwRI), the Texas Department of Transportation (TxDOT) and Texas A&M Transportation Institute (TTI), other members are the University of Texas at Austin’s Center for Transportation Research (CTR), and 32 municipal and regional partners. The Texas group plans to offer a full and varied range of testing environments, from