Skip to main content

TRC launches smart mobility advanced research and test centre

The US state of Ohio and the Ohio State University are funding the US$45 million Phase 1 expansion of the Transportation Research Center's (TRC) new 540-acre SMART (Smart Mobility Advanced Research and Test) Center. To to be built within the 4,500 acres of the TRC’s independent automotive testing facility and proving grounds, SMART aims to be a hub for testing of automated and autonomous vehicles, designed to enable car manufacturers and suppliers to expand their testing. Phase 1 of the expansion will in
January 27, 2017 Read time: 2 mins
The US state of Ohio and the Ohio State University are funding the US$45 million Phase 1 expansion of the Transportation Research Center's (TRC) new 540-acre SMART (Smart Mobility Advanced Research and Test) Center. To to be built within the 4,500 acres of the TRC’s independent automotive testing facility and proving grounds, SMART aims to be a hub for testing of automated and autonomous vehicles, designed to enable car manufacturers and suppliers to expand their testing.

Phase 1 of the expansion will include a flexible platform and infrastructure; a high-speed intersection; a flexible test platform; an urban network of intersections, roundabouts, traffic signals; a rural network including wooded roads, neighbourhood network and a SMART Center support building.

TRC has been testing different types of vehicles and components on its 4,500-acre facility for more than 40 years, including testing automated and autonomous vehicles over the last two decades.  It provides a convenient location to safely test new technologies before their use on city streets and highways in support of Columbus's $140 million 324 US Department of Transportation (USDOT) Smart City project.

Funding efforts are underway for Phases 2 and 3 of the. Phase 2 will focus on the world's first indoor test facility, which will enable rigorous testing of highly automated vehicles in severe weather conditions.  Phase 3 will include a six-lane high-speed highway, with on and off ramps and underpasses, to support the testing of vehicle swarming and truck platooning.

For more information on companies in this article

Related Content

  • China paves way to enhanced safety with C-V2X
    September 30, 2021
    China is blazing a trail for C-V2X technology and paving the way for deployments worldwide, explains Qualcomm Technologies' Jim Misener
  • CCAM innovation at ITS World Congress 2021
    September 27, 2021
    We live in an era of increasingly cooperative, connected and automated mobility (CCAM) but there’s still a huge way to go - visitors to ITS World Congress in Hamburg will be able to see projects, innovations and real-life solutions showcased in the city
  • Study finds rumble strips save lives on rural highways
    June 2, 2015
    A recently completed study shows that rumble strips are proving to be an effective and low-cost way to reduce crashes on Michigan's state highways. The Michigan Department of Transportation (MDOT) started a major rumble strip program for two-lane high-speed rural highways in 2008. Centre-line and shoulder rumble strips were installed on all MDOT rural, non-freeway highways with posted speed limits of 55 mph and appropriate paved lane and shoulder widths. To date, 5,700 miles of centre-line rumble strips
  • Wireless technology aids city-wide traffic management
    October 10, 2012
    An extensive hybrid communications network in the County of Los Angeles is proving the capability and benefits of modern wireless technology for traffic management across wide areas. Wireless communications technology has found a welcoming test bed for use in traffic management systems, in the County of Los Angeles. The county has long running programmes synchronizing and monitoring traffic signals over large areas. In the process, combined with installation of advanced traffic management systems (ATMS), th