Skip to main content

Toyota enters partnership to build HD maps for AVs from space

Toyota Research Institute-Advanced Development (TRI-AD), technology company Maxar Technologies and NTT Data are working together to build high-definition (HD) maps for autonomous vehicles (AV) using satellite imagery. TRI-AD carried out an analysis, saying that current HD maps cover less than 1% of the global road network and there is a need to broaden the coverage of urban areas and local roads before AVs can become a mainstream mobility technology. A HD map created from satellite imagery would all
May 3, 2019 Read time: 2 mins
1686 Toyota Research Institute-Advanced Development (TRI-AD), technology company Maxar Technologies and NTT Data are working together to build high-definition (HD) maps for autonomous vehicles (AV) using satellite imagery.


TRI-AD carried out an analysis, saying that current HD maps cover less than 1% of the global road network and there is a need to broaden the coverage of urban areas and local roads before AVs can become a mainstream mobility technology.

A HD map created from satellite imagery would allow the driving software to compare multiple data sources and signal the car to take action to stay safe, the company adds.

Utilising Maxar’s Geospatial Big Data Platform, imagery from the company’s satellite imagery library will be fed into NTT Data’s specialised algorithms using artificial intelligence to extract information to generate the road network. TRI-AD will then make HD maps available for delivery from its cloud into Toyota test vehicles.

Mandali Khalesi, vice president of automated driving at TRI-AD, says advances in electronics and aerospace engineering are leading to higher resolutions and more frequent updates of global imagery from space-based assets.

“Additionally, machine learning is helping automate the discovery and integration of semantic relationships between road elements within image data,” Khalesi adds.

NTT Data, an IT services provider, will use its artificial intelligence and enhanced image-processing resources to expand the coverage of HD maps.

Katsuichi Sonoda, vice president and head of NTT Data’s social infrastructure solution sector, says: “In the future, we hope to map worldwide road networks from space using our enhanced image-processing expertise.”

Related Content

  • Telensa and Samsung SDS partner on smart city infrastructure
    May 8, 2019
    Telensa has joined forces with Samsung SDS to work on smart city projects in Asia Pacific and the US. Starting with Korea, the partners will collaborate on smart streetlighting, combining Telensa’s Planet Streetlight control application with Samsung’s Brightics Internet of Things (IoT) platform to help cities save energy and access a range of sensor applications. Telensa will utilise Samsung’s resources in areas such as 5G and blockchain, which require streetlight access for widescale deployment.
  • Hayden AI unveils traffic violation solution 
    February 26, 2020
    Technology provider Hayden AI has launched an automated system designed to enforce transit regulation in bus lanes.
  • New software could detect when people text and drive
    September 20, 2017
    Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.
  • New ANPR solutions overcome variables
    May 18, 2018
    The sheer range of variables makes it difficult to find a single algorithm to ensure a 100% standard of ANPR. David Crawford investigates new processing technology. Automatic number plate recognition (ANPR), using optical character recognition and image-processing to identify vehicles, plays key roles in traffic monitoring and law enforcement, access and parking control, electronic toll collection, vehicle security and crime deterrence. Overall, system performance is well rated, with high levels of