Skip to main content

Towards advanced automated vehicles - AutoNet2030 research project launched

The EU co-funded AutoNet2030 research project begins in November 2013, and will run through to October 2016. The aim of the project is to enable the introduction of more fail-safe, cost effective automated driving technologies to make road traffic safer and more convenient. Deployment is expected to be in 2020-2030, when cooperative wireless communications will already have been available in the majority of vehicles.
October 28, 2013 Read time: 2 mins
The EU co-funded AutoNet2030 research project begins in November 2013, and will run through to October 2016. The aim of the project is to enable the introduction of more fail-safe, cost effective automated driving technologies to make road traffic safer and more convenient. Deployment is expected to be in 2020-2030, when cooperative wireless communications will already have been available in the majority of vehicles.

The project will investigate the complementing functionality between on-board sensors and 5.9 GHz 802.11p based cooperative wireless communications and demonstrate how these components can optimally work together in an advanced automated driving system. In particular, the project aims to demonstrate how the combination of cooperative wireless communications and on-board sensors will make lane-keeping, manoeuvring negotiations and interaction between automated/manually driven vehicles more efficient and reliable.

The prototype cooperative automated driving system will be fully integrated into test vehicles and demonstrated on a test track. Using results from test driving measurements, the effect of scaling up to dense traffic scenarios will be investigated by computer simulations. The project will actively contribute to the ongoing standardisation of 802.11p wireless technology based cooperative communications.

Related Content

  • Marben shows V2X successes at World Congress
    September 8, 2014
    Marben Products is here at the ITS World Congress flushed with major successes achieved this year. The US NHTSA connected vehicle decision and the French government Scoop@F initiative (3,000 vehicles and 2,000 km of roads equipped with V2X) are new significant steps towards the large scale deployment of the Vehicle-to-Vehicle and Vehicle-to-Infrastructure (V2X) communication technology.
  • US Congress debates autonomous vehicles
    November 20, 2013
    Emerging technologies have the potential to significantly reduce vehicle crashes and associated fatalities, according to Kirk Steudle, director of the Michigan Department of Transportation, testifying at the US House Transportation and Infrastructure Committee, Subcommittee on Highways and Transit. Speaking on behalf of the American Association of State Highway and Transportation Officials, Steudle said, "Nothing is more exciting than the potential safety benefits of this emerging technology," said Steud
  • ITS asset management matters
    April 26, 2013
    Maintenance of on-road ITS kit needs to become more sophisticated; while new technologies can deliver better road maintenance. David Crawford investigates both sides of the issue "Good information is key to effective ITS asset maintenance,” says Ian Routledge of the Ian Routledge Consultancy (IRC), whose Imtrac (Information Management for TRAffic Control) system is poised for European expansion. Developed as an ‘intelligent filing cabinet’ for storing information about on-road equipment, the online database
  • Semi-autonomous hybrid vehicle trials show fuel, emission savings
    July 16, 2012
    The Transport Research Laboratory has unveiled an innovative semi-autonomous vehicle prototype. It offers improves in environmental performance and safety but also displays some shortcomings. Mike Woof reports. The UK's Transport Research Laboratory (TRL) has been working on an innovative project to develop a prototype vehicle intended to reduce fuel consumption. Based on a Ford Escape hybrid model, TRL's Sentience vehicle uses a combination of mobile communications and mapping technologies to reduce fuel c