Skip to main content

Tesla crash in China puts autonomous cars in the spotlight again

Tesla is investigating the crash in Beijing, China last week, when a Tesla Model S in autopilot mode hit the side of a parked car. According to Reuters, Tesla said it had reviewed data to confirm the car was in autopilot mode, a system that takes control of steering and braking in certain conditions. Tesla also said it was the driver's responsibility to maintain control of the vehicle. In this case, it said, the driver's hands were not detected on the steering wheel. "The driver of the Tesla, whose h
August 11, 2016 Read time: 3 mins
Tesla is investigating the crash in Beijing, China last week, when a Tesla Model S in autopilot mode hit the side of a parked car. According to Reuters, Tesla said it had reviewed data to confirm the car was in autopilot mode, a system that takes control of steering and braking in certain conditions.

Tesla also said it was the driver's responsibility to maintain control of the vehicle. In this case, it said, the driver's hands were not detected on the steering wheel.

"The driver of the Tesla, whose hands were not detected on the steering wheel, did not steer to avoid the parked car and instead scraped against its side," a Tesla spokeswoman said in an emailed response to Reuters.

Richard Cuerden, chief scientist, engineering & technology, at the UK’s Transport Research Laboratory (491 TRL) said the collision in China further highlights potential issues around the use of automated systems, particularly in cases where the driver is still required to remain alert and attentive at the controls of the vehicle.

He said, “The Society of Automotive Engineers currently specifies five levels of vehicle automation. Tesla’s autopilot system is classified as level two automation, which means the driver is required to maintain alertness and be ready at the controls, even in autopilot mode. This presents well-known challenges in terms of drivers’ awareness and understanding of the capabilities of the automation systems and the process by which control is shared and shifted between the driver and the vehicle in different modes of automated operation.

“We are going to see more collisions like this where, for whatever reason, the driver and the technology didn’t identify and react to the threat. What we need to do now is understand why the vehicle made the decisions it did and act accordingly. This is where projects like MOVE_UK, which will compare the behaviour of automated systems to human drivers, can really help. By understanding what went wrong and why, we can quickly teach collision avoidance systems to better predict any risks in real life environments.

“At the same time, it’s vital that drivers of vehicles with automated functionality remain aware and follow the instructions provided by the manufacturer, so that incidents like the one in China can be avoided as we discover more about this new technology.”

Related Content

  • September 26, 2019
    Sign language reduces human error says Clearview
    Wrong-way warning systems and advanced queue detection can help to reduce human error. They can also cut road accidents – and therefore road deaths, says Clearview Intelligence Where were nearly 1,800 deaths on the UK’s roads in 2018 – an average of five people dying each day. The largest single cause of serious injury is crashes at junctions (accounting for 33% of incidents), while the largest single cause of death was run-off road crashes (30%) “With vehicles increasingly being designed with saf
  • October 17, 2019
    Getting C/AVs from pipedream to reality
    The UK government has suggested that driverless cars could be on the roads by 2021. But designers and engineers are grappling with a number of difficult issues, muses Chris Hayhurst of MathWorks Earlier this year, the UK government made the bold statement that by 2021, driverless cars will be on the UK’s roads. But is this an achievable reality? Driverless technology already has its use cases on our roads, with levels of autonomy ranked on a scale. At one end of the spectrum, level 1 is defined by th
  • September 14, 2017
    US DOT releases new automated driving systems guidance
    The US Department of Transportation and the National Highway Traffic Safety Administration (NHTSA) have released new federal guidance for Automated Driving Systems (ADS): A Vision for Safety 2.0. The new Voluntary Guidance focuses on levels 3, 4 and 5 automated driving systems (ADS).
  • October 11, 2022
    “There will be no driverless cars on a dead planet”
    ‘Smart’, ‘intelligent’ and ‘advanced’ are great words when they’re applied to mobility – but just make sure they can actually change the world for the better, warns Professor Glenn Lyons