Skip to main content

Study reveals in-car devices aid positive changes to driver behaviour

The results of a four-year study by the Field Operational Tests of Aftermarket and Nomadic devices in Vehicles (TeleFOT) Consortium were presented at a recent conference in Brussels. The study focused on the assessment of the impact of driver support functions provided by in-vehicle aftermarket and nomadic devices on driving and driver behaviour. Coordinated by the Technical Research Centre of Finland (VTT) and with a budget of US$19.5 million, the four-year TeleFOT project is one of the biggest traffic IC
December 3, 2012 Read time: 3 mins
The results of a four-year study by the Field Operational Tests of Aftermarket and Nomadic devices in Vehicles (TeleFOT) Consortium were presented at a recent conference in Brussels.  The study focused on the assessment of the impact of driver support functions provided by in-vehicle aftermarket and nomadic devices on driving and driver behaviour.

Coordinated by the Technical Research Centre of Finland (814 VTT) and with a budget of US$19.5 million, the four-year TeleFOT project is one of the biggest traffic ICT projects in Europe. The recently completed operational field trials produced a unique set of data, based on a comprehensive assessment of driver behaviour and the efficiency, quality, robustness and user-friendliness of interactive in-vehicle traffic systems and services.

Many intelligent transport services provided by nomadic devices are already part of the daily lives of road users, but information about their actual impacts on road safety, for example, has not previously been available.

Almost 3,000 test drivers were recruited for the project from Finland, Sweden, Germany, the UK, France, Greece, Italy and Spain, covering a combined distance of more than ten million kilometres.

The extensive field trials reveal that intelligent transport systems allowed drivers to find quicker and less congested routes, and prevented them from speeding accidentally. Fuel costs also dropped, as did driving-related stress and anxiety. The drivers’ sense of safety and driving comfort increased.

The project studied the impact of driver support functions provided by in-vehicle aftermarket devices on safety, efficiency, mobility, the environment, and driver behaviour in road traffic. The services tested included static and dynamic navigation support, green driving support, speed limit information and traffic information.

The main benefits of the functions were perceived by the participants to be convenience (easy access to information), comfort (less uncertainty, fewer driving errors), economic (less cost) and environment (fewer emissions).

Of the tested devices, navigators and traffic information systems, in particular, increased efficiency by allowing drivers to find quicker and less congested routes. Up to 45 per cent of participants, particularly those in large cities, reported that the traffic information function helped them to avoid travel delays and traffic jams. Green driving systems guided drivers to routes that lowered their emissions, and towards driving more economically. Green driving advisory systems were found to reduce fuel consumption by up to 6 per cent.

At the Finnish test site, for example, the use of a green driving system in bus transport helped to lower fuel consumption and to reduce speeding, improving road safety. Another significant finding is that the systems reduced driving-related stress and anxiety across the board and, in all the participating countries, increased the drivers’ sense of safety and driving comfort. From the perspective of mobility, the results were positive for all systems.

The users’ expectations for the services were high at first. After using the services for some time, they were slightly disappointed not to have seen a direct benefit. The longer they used the services, the more clearly they could see the benefits and advantages, and the more satisfied they were.

For more information on companies in this article

Related Content

  • Does ADAS create as many problems as it solves
    September 23, 2014
    Victoria Banks and Neville Stanton [1] of Southampton University’s Transportation Research Group examine the real impact of creeping driver automation. Safety research suggests that 90% of accidents are thought to be a result of driver inattentiveness to unpredictable or incomplete information and the vision is that highly automated vehicles will lead to accident-free driving in the future.
  • Need for performance standards for road user charging systems
    February 2, 2012
    GNSS-based road use metering systems need performance metrics, as well as ways to test and reliably compare them. Bern Grush and Joaquín Cosmen write about the function of the GNSS Metering Association for Road-use charging (GMAR), recently set up to address this issue
  • I-80 Smart Corridor sets the ITS standard for California's Bay Area
    March 23, 2015
    Colin Sowman looks at California’s ‘smartest’ road which will open this spring to counter congestion and accidents on one of the Bay Area’s busiest interstates. Interstate 80 (I-80) is one of the busiest roads in the San Francisco Bay area with up to 270,000 vehicles using the corridor every day. The section between the Carquinez Bridge in Crockett and the Bay Bridge not only suffers congestion during the working week but also at weekends. Traditional remedies such as building additional lanes (there are al
  • I-80 Smart Corridor sets the ITS standard for California's Bay Area
    March 23, 2015
    Colin Sowman looks at California’s ‘smartest’ road which will open this spring to counter congestion and accidents on one of the Bay Area’s busiest interstates. Interstate 80 (I-80) is one of the busiest roads in the San Francisco Bay area with up to 270,000 vehicles using the corridor every day. The section between the Carquinez Bridge in Crockett and the Bay Bridge not only suffers congestion during the working week but also at weekends. Traditional remedies such as building additional lanes (there are al