Skip to main content

Siemens to provide V2I technology for Florida pilot connected vehicle pilot project

Siemens, as a member of the Tampa-Hillsborough Expressway Authority (THEA) team, has been chosen by the US Department of Transportation (USDOT) to provide vehicle-to-infrastructure (V2I) technology for a new connected vehicle pilot project. Siemens V2I technology will enable vehicles and pedestrians to communicate with traffic infrastructure like intersections and traffic lights in real-time to reduce congestion specifically during peak rush hour in downtown Tampa. The technology will also help improve s
March 24, 2016 Read time: 2 mins
189 Siemens, as a member of the Tampa-Hillsborough Expressway Authority (THEA) team, has been chosen by the 324 US Department of Transportation (USDOT) to provide vehicle-to-infrastructure (V2I) technology for a new connected vehicle pilot project.

Siemens V2I technology will enable vehicles and pedestrians to communicate with traffic infrastructure like intersections and traffic lights in real-time to reduce congestion specifically during peak rush hour in downtown Tampa. The technology will also help improve safety and reduce greenhouse gas emissions.

This is one of three projects funded by the USDOT to pilot next-generation technology in infrastructure and vehicles that can impact unimpaired vehicle crashes, which make up 80 percent of the crashes on the road.

Siemens is working in partnership with THEA to identify how to implement CV technologies including: Intelligent traffic signal systems to coordinate signals and pedestrian crossings that respond immediately to traffic conditions in real-time and  provide signal priority; Curve speed warnings to alert drivers if they are approaching a curve at a speed that may be too high for safe travel; Transit bus operator alerts when pedestrians may be in a crosswalk or when vehicles attempt to go around a bus in order to avoid potential conflicts; Automated calls or audio cues for impaired pedestrians to safely navigate crosswalks; Intersection Movement Assistance that warns drivers when it is unsafe to enter an intersection, for example when something may be blocking the driver’s view of opposing of crossing traffic, and forward collision warnings for hard braking in the traffic stream; Probe-enabled traffic monitoring to transmit real-time traffic data between vehicles.

The connected vehicle systems are able to communicate with both new and older vehicles through new in-vehicle technology, an on-board unit such as a satellite radio, or a smart phone application. This project will help the USDOT develop the technology, data and baselines to be fully compatible with crash avoidance systems of new cars beginning in the 2017 model year.

For more information on companies in this article

Related Content

  • Siemens extends family of ELV controllers
    February 3, 2012
    Following the introduction of Siemens' Extra Low Voltage (ELV) intersection controller and the rapid growth of ST900 ELV installations, the company has now launched an ELV pedestrian controller.
  • Most pedestrian detection systems ‘hit pedestrians at 30mph’
    October 14, 2019
    In-car automatic emergency braking systems with pedestrian detection mostly fail to avoid hitting pedestrians - and are “completely ineffective at night”, according to new research. In shocking findings, the American Automobile Association (AAA) revealed that most systems hit a simulated pedestrian target at 30mph. A collision also occurred 89% of the time when a vehicle operating at 20mph encountered a child darting between two cars. In tests, all vehicles collided with an adult pedestrian immediately fo
  • Sony's AI sensors in Rome smart city trial
    May 28, 2021
    Smart city project run by Envision will use Sony's IMX500 image sensors with AI processing
  • Connected Signals aims to improve mass transit in Arcadia
    July 8, 2019
    Connected Signals has introduced a smart signal priority system to manage mass transit in the US city of Arcadia, California. The company says its Vehicle to Infrastructure (V2I) technology will to help reduce traffic signal delays by using artificial intelligence to anticipate users’ arrivals at signalised intersections and then request priority. Connected Signals’ Transit Signal Priority (TSP) is expected to help the city’s buses get in the ‘green wave’ of traffic, either by extending a green light or b