Skip to main content

Self-driving shared vehicles ‘could take most cars off city streets’

Fleets of TaxiBots and AutoVots could deliver today’s mobility with significantly fewer cars, says a new study. Self-driving shared cars could make 90 per cent of conventional cars in mid-sized cities superfluous, according to the study published by the International Transport Forum at the OECD. Even during peak hours, only one third of the current number of cars would be needed to provide the same number of trips as today. ITF researchers used actual transport data from Lisbon, Portugal, to model the
May 1, 2015 Read time: 2 mins
Fleets of TaxiBots and AutoVots could deliver today’s mobility with significantly fewer cars, says a new study. Self-driving shared cars could make 90 per cent of conventional cars in mid-sized cities superfluous, according to the study published by the 998 International Transport Forum at the 7353 OECD.

Even during peak hours, only one third of the current number of cars would be needed to provide the same number of trips as today.

ITF researchers used actual transport data from Lisbon, Portugal, to model the impact of two concepts: TaxiBots, self-driving vehicles shared simultaneously by several passengers (ride sharing) and AutoVots, which pick up and drop off single passengers sequentially (car sharing).

The largest reduction is achieved where a fleet of TaxiBots is complemented by a subway or other high-capacity public transport. But even in the least effective scenario, 50 per cent of cars would no longer be needed (AutoVots without subway).

The need for on-street parking spots could be totally removed with a fleet of shared self-driving cars in all scenarios, allowing the reallocation of 1.5 million m², or 20 per cent of road space to other uses.

While the number of cars is drastically lower, total kilometres travelled increase. This is due to detours for pick-ups/drop-offs, repositioning and a shift from bus trips to shared cars. The additional travel could increase environmental impacts, if the fleets used conventional engines. If a fleet of electric vehicles were used instead, a TaxiBot fleet would need only two per cent more vehicles, however, to accommodate battery re-charging times and reduced travel range.

For more information on companies in this article

Related Content

  • Car parking and parked cars need not be a technological black hole
    March 19, 2015
    David Crawford mines the potential of joined-up parking. Drivers conventionally see parking as an isolated, often frustrating, action; but collectively their attempts to find a space impact hugely on traffic flows. But new analyses of parking events look set to deliver real benefits to motorists and cities alike. Initiatives getting under way around the world are highlighting the advantages of connecting up parking events and – eventually - parked cars. The hoped-for results include not only enhanced urban
  • Free online tool calculates benefits of navigation systems
    May 16, 2012
    Navteq has launched a free online tool which calculates the potential savings delivered by using navigation systems. The service has been designed to cover both private and professional drivers and can be used, for example, by fleet managers to estimate the impact in relation to a group of vehicles or by car dealerships and PND manufacturers to demonstrate the savings to consumers at the point of sale.
  • Africa transport projects win ITF green awards
    May 27, 2022
    Cash prizes will be spent on data collection to make decarbonisation case in Uganda and Kenya
  • Clutchless multi-speed transmission for EVs
    February 1, 2012
    Transmission specialist Zeroshift has devised a multi-speed gearbox for electric vehicles (EVs) that needs no clutch.