Skip to main content

Self-driving shared vehicles ‘could take most cars off city streets’

Fleets of TaxiBots and AutoVots could deliver today’s mobility with significantly fewer cars, says a new study. Self-driving shared cars could make 90 per cent of conventional cars in mid-sized cities superfluous, according to the study published by the International Transport Forum at the OECD. Even during peak hours, only one third of the current number of cars would be needed to provide the same number of trips as today. ITF researchers used actual transport data from Lisbon, Portugal, to model the
May 1, 2015 Read time: 2 mins
Fleets of TaxiBots and AutoVots could deliver today’s mobility with significantly fewer cars, says a new study. Self-driving shared cars could make 90 per cent of conventional cars in mid-sized cities superfluous, according to the study published by the 998 International Transport Forum at the 7353 OECD.

Even during peak hours, only one third of the current number of cars would be needed to provide the same number of trips as today.

ITF researchers used actual transport data from Lisbon, Portugal, to model the impact of two concepts: TaxiBots, self-driving vehicles shared simultaneously by several passengers (ride sharing) and AutoVots, which pick up and drop off single passengers sequentially (car sharing).

The largest reduction is achieved where a fleet of TaxiBots is complemented by a subway or other high-capacity public transport. But even in the least effective scenario, 50 per cent of cars would no longer be needed (AutoVots without subway).

The need for on-street parking spots could be totally removed with a fleet of shared self-driving cars in all scenarios, allowing the reallocation of 1.5 million m², or 20 per cent of road space to other uses.

While the number of cars is drastically lower, total kilometres travelled increase. This is due to detours for pick-ups/drop-offs, repositioning and a shift from bus trips to shared cars. The additional travel could increase environmental impacts, if the fleets used conventional engines. If a fleet of electric vehicles were used instead, a TaxiBot fleet would need only two per cent more vehicles, however, to accommodate battery re-charging times and reduced travel range.

For more information on companies in this article

Related Content

  • Civil engineers find fuel savings where the rubber meets the road
    May 23, 2012
    A new study by civil engineers at MIT shows that using stiffer pavements on America’s roads could reduce vehicle fuel consumption by as much as three per cent, that could add up to 273 million barrels of crude oil per year, or US$15.6 billion at today’s oil prices. This would result in an accompanying annual decrease in CO2 emissions of 46.5 million metric tons.
  • Informal transport moves emerging megacities
    August 11, 2020
    If you want to get to work in emerging markets, the chances are you may not be using traditional public transit lines. Devin de Vries of WhereIsMyTransport makes the case for informal networks
  • Indian tech company wins award for turning diesel buses into EVs
    May 18, 2016
    The International Transport Forum (ITF) has awarded India-based technology firm, KPIT Technologies, the Promising Innovation in Transport Award 2016, for its development of a system that can convert new as well as existing diesel buses into full electric buses. KPIT’s smart electric bus technology is modular and highly versatile, making is possible to retrofit different vehicle types from mini buses to large 12-metre public transport buses. The first bus retrofitted by KPIT went into serviced in 2015
  • Truck platooning: the evidence is complex
    February 6, 2020
    A number of claims are made for the value of truck platooning. David Crawford looks at the figures from a new set of examples which suggest that the situation is more complex than you might think