Skip to main content

Self-driving cars ‘a US$87 billion opportunity in 2030’

The latest research from Lux Research indicates that automakers and technology developers are closer than ever to bringing self-driving cars to market, with basic Level 2 autonomous behaviour already coming to market, in the form of relatively modest self-driving features like adaptive cruise control, lane departure warning, and collision avoidance braking. With these initial steps, automakers are already on the road to some level of autonomy, but costs remain high in many cases. It is the higher levels
May 22, 2014 Read time: 4 mins
The latest research from 3900 Lux Research indicates that automakers and technology developers are closer than ever to bringing self-driving cars to market, with basic Level 2 autonomous behaviour already coming to market, in the form of relatively modest self-driving features like adaptive cruise control, lane departure warning, and collision avoidance braking. With these initial steps, automakers are already on the road to some level of autonomy, but costs remain high in many cases.

It is the higher levels of autonomy that are grabbing the hype right now. Today, demonstrations of autonomous cars by the likes of 1691 Google and 1685 Mercedes-Benz are technically impressive, but still depend on high-resolution special maps, are limited to certain routes and weather conditions, and need a trained professional driver behind the wheel. These Level 3 cars are at the forefront today. The future awaits a demonstrated truly autonomous Level 4 car, wherein fully autonomous driving is enabled in any environment and in all circumstances, without any driver input.

The present state of the technology combined with a vision of the future demands a pragmatic interpretation and a rational segmentation of the overall market value and the cost stack therein. Level 2 self-driving will increase from a small fraction of new cars sold today – about 3 per cent globally – to 57 per cent in 2020, and 92 per cent in 2030.

However, by that same year only 8 per cent of new cars sold will attain the reasonable capabilities of Level 3 autonomy, and no Level 4 fully autonomous cars will be available. By 2030 automakers will be able to capture profits of about US$9.3 billion from the emergence of autonomous vehicles, making this new technology an alluring proposition. However, Level 3 autonomy will be a premium option, opening the door to business model innovation if automakers hope to deploy it beyond some high-end vehicles.

More importantly for a wider set of market participants, self-driving technology will create a new opportunity for the automotive value chain, and bringing in outsiders to join incumbents looking to capitalise on a new market. Software will be the biggest autonomous vehicle value chain winner, with US$25 billion in revenues in 2030, a 28 per cent CAGR. This software will be largely invisible to the driver, operating behind the scenes as machine vision that brings sensor inputs together, and that uses artificial intelligence to determine a safe navigation path through the world. It will be a differentiated and high-stakes field, ripe for new partnerships beyond the conventional automotive value chain. Optical cameras and radar sensors will amount to US$8.7 billion and US$5.9 billion opportunities in 2020, respectively, thanks to Level 2 cars. However, because of the increasing complex processing requirements of Level 3 autonomy, in 2030 computers will be biggest hardware opportunity on-board autonomous cars, amounting to a US$13 billion opportunity.

Prospective suppliers in the value should anticipate significant changes both inside and outside the vehicle over time, inevitably creating opportunities for new entrants to shine. Inside the vehicle, decreased driver involvement will require high-end automakers to find new ways to differentiate amongst each other, based less on outright performance and sportiness, and more on luxury, technology, and the human-machine interface. In the foreseeable future, vehicles will be able to handle monotonous tasks. For example, to find a parking spot a driver would be able to get out of their car in front of their destination, and instruct the car to park itself nearby. The car would then safely proceed at low speed around the neighbourhood, looking for available parking spots. Infrastructure developers can enable this use case through deploying parking sensors and associated communication devices to detect when spots become available.

Opportunities abound, but as for the vehicles involved, rational navigation to the real market traction is required.

For more information on companies in this article

Related Content

  • German companies to develop new LiDAR technology for autonomous cars
    August 4, 2016
    German automotive supplier ZF has acquired a 40 per cent stake in Hamburg-based Ibeo Automotive Systems, a specialist in LiDAR technology and the development of environmental recognition software with a particular focus on applications for autonomous driving. The two companies plan to develop the next generation of LiDAR technology for vehicle applications and autonomous driving, without the rotating mirrors contained in current LiDAR systems. According to ZF, LiDAR expands its current sensor portfo
  • London Science Museum hosts free driverless vehicle exhibition
    March 8, 2019
    Autonomous vehicles (AVs) are at the heart of a new exhibition at the London Science Museum. Driverless: Who is in control? opens on 12 June and looks at “how close we are to living in a world driven by thinking machines”. Continuing until October 2020, the show examines themes familiar to ITS professionals wrestling with the legal, ethical and logistical issues around the introduction of driverless cars to public roads. The museum says it will focus on “how much of this seemingly futuristic technolog
  • Europe’s heavy trucks ‘no more fuel-efficient than ten years ago’
    December 4, 2015
    A study by the International Council on Clean Transportation (ICCT) claims that trucks in the European Union are no more fuel-efficient than they were a decade ago. The study, which analyses data from the European commercial trucking market, looking at key member states, manufacturers and fuel consumption trend, found that heavy-duty vehicles represent only four per cent of the on-road fleet in the European Union, but are responsible for 30 per cent of on-road CO2 emissions. In contrast, the study cla
  • Smart Spanish city trials cell-based traffic management
    November 7, 2013
    David Crawford reports on an urban electronic nervous system. The northern Spanish city of Santander – historically a port - is now an emerging technology showcase attracting global attention as a prototype for a medium-sized smart city of the future. In a move to determine the optimal use of available data, it is creating a de-facto experimental laboratory for sensor and mobile phone-based urban traffic management and environmental monitoring innovations.