Skip to main content

Self-driving cars ‘a US$87 billion opportunity in 2030’

The latest research from Lux Research indicates that automakers and technology developers are closer than ever to bringing self-driving cars to market, with basic Level 2 autonomous behaviour already coming to market, in the form of relatively modest self-driving features like adaptive cruise control, lane departure warning, and collision avoidance braking. With these initial steps, automakers are already on the road to some level of autonomy, but costs remain high in many cases. It is the higher levels
May 22, 2014 Read time: 4 mins
The latest research from 3900 Lux Research indicates that automakers and technology developers are closer than ever to bringing self-driving cars to market, with basic Level 2 autonomous behaviour already coming to market, in the form of relatively modest self-driving features like adaptive cruise control, lane departure warning, and collision avoidance braking. With these initial steps, automakers are already on the road to some level of autonomy, but costs remain high in many cases.

It is the higher levels of autonomy that are grabbing the hype right now. Today, demonstrations of autonomous cars by the likes of 1691 Google and 1685 Mercedes-Benz are technically impressive, but still depend on high-resolution special maps, are limited to certain routes and weather conditions, and need a trained professional driver behind the wheel. These Level 3 cars are at the forefront today. The future awaits a demonstrated truly autonomous Level 4 car, wherein fully autonomous driving is enabled in any environment and in all circumstances, without any driver input.

The present state of the technology combined with a vision of the future demands a pragmatic interpretation and a rational segmentation of the overall market value and the cost stack therein. Level 2 self-driving will increase from a small fraction of new cars sold today – about 3 per cent globally – to 57 per cent in 2020, and 92 per cent in 2030.

However, by that same year only 8 per cent of new cars sold will attain the reasonable capabilities of Level 3 autonomy, and no Level 4 fully autonomous cars will be available. By 2030 automakers will be able to capture profits of about US$9.3 billion from the emergence of autonomous vehicles, making this new technology an alluring proposition. However, Level 3 autonomy will be a premium option, opening the door to business model innovation if automakers hope to deploy it beyond some high-end vehicles.

More importantly for a wider set of market participants, self-driving technology will create a new opportunity for the automotive value chain, and bringing in outsiders to join incumbents looking to capitalise on a new market. Software will be the biggest autonomous vehicle value chain winner, with US$25 billion in revenues in 2030, a 28 per cent CAGR. This software will be largely invisible to the driver, operating behind the scenes as machine vision that brings sensor inputs together, and that uses artificial intelligence to determine a safe navigation path through the world. It will be a differentiated and high-stakes field, ripe for new partnerships beyond the conventional automotive value chain. Optical cameras and radar sensors will amount to US$8.7 billion and US$5.9 billion opportunities in 2020, respectively, thanks to Level 2 cars. However, because of the increasing complex processing requirements of Level 3 autonomy, in 2030 computers will be biggest hardware opportunity on-board autonomous cars, amounting to a US$13 billion opportunity.

Prospective suppliers in the value should anticipate significant changes both inside and outside the vehicle over time, inevitably creating opportunities for new entrants to shine. Inside the vehicle, decreased driver involvement will require high-end automakers to find new ways to differentiate amongst each other, based less on outright performance and sportiness, and more on luxury, technology, and the human-machine interface. In the foreseeable future, vehicles will be able to handle monotonous tasks. For example, to find a parking spot a driver would be able to get out of their car in front of their destination, and instruct the car to park itself nearby. The car would then safely proceed at low speed around the neighbourhood, looking for available parking spots. Infrastructure developers can enable this use case through deploying parking sensors and associated communication devices to detect when spots become available.

Opportunities abound, but as for the vehicles involved, rational navigation to the real market traction is required.

Related Content

  • December 27, 2024
    Clear signs on inspection from EU Road Federation
    Free checklist will help ensure ADAS systems work safely, ERF says
  • October 29, 2014
    Xerox counts on machine vision for high occupancy enforcement
    Machine vision techniques can provide solutions to some of the traffic planners most enduring problems With a high proportion of cars being occupied by the driver alone, one of the easiest, most environmentally friendly and cheapest methods of reducing congestion is to encourage more people to travel in each vehicle. So to persuade people to share rides, high occupancy lanes were devised to prioritise vehicles with (typically) three of more people on board and in some areas these vehicles are exempt from
  • October 28, 2015
    Emissions reductions targets to have major impact on transport
    As bold moves aimed at reducing greenhouse gas emissions have been introduced in California, David Crawford looks at the ramifications for transportation. California Governor Jerry Brown’s recent dramatic raising of the bar on emissions reduction policy for the state has won him praise from Japan, Australia, Europe and the secretariat of the critical UN conference on climate change being held in Paris in November/December 2015. His April 2015 executive order aimed at bringing emissions to 40% below 1990 lev
  • February 2, 2012
    Free-flow tolling needs classification technology rethink
    The move to all-electronic fee collection should be encouraging tolling authorities to look again at whether their vehicle classification criteria and technologies remain at all appropriate. Bob Lees of Idris Technology writes