Skip to main content

San Antonio GPS-based BRT gets the green light

San Antonio, Texas, is launching a new GPS-based bus rapid transit system (BRT) that keeps San Antonio’s new VIA Primo bus fleet on-schedule with minimal impact on individual traffic flow. Siemens Road and City Mobility business has worked together with Trapeze Group to create a new transit signal priority (TSP) solution that they say is the first of its kind to use a ‘virtual’ GPS-based detection zone for transit vehicle traffic management without the need for physical detector equipment at the intersectio
December 20, 2012 Read time: 3 mins
San Antonio, Texas, is launching a new GPS-based bus rapid transit system (BRT) that keeps San Antonio’s new VIA Primo bus fleet on-schedule with minimal impact on individual traffic flow.

189 Siemens Road and City Mobility business has worked together with 629 Trapeze Group to create a new transit signal priority (TSP) solution that they say is the first of its kind to use a ‘virtual’ GPS-based detection zone for transit vehicle traffic management without the need for physical detector equipment at the intersection. It allows the VIA Primo fleet’s on-board computer to automatically request a green light when the bus is behind schedule and approaching a busy intersection, improving travel times and getting passengers to their destinations faster.

San Antonio’s VIA Metropolitan Transit identified the need for a new BRT system but wanted to avoid adding new hardware on the street that would require construction delays and increased costs. The ‘virtual’ detection zones are installed digitally on city traffic servers, unlike most 6865 BRT systems that use physical detector equipment hardwired to traffic controllers. The zones can be easily adjusted in response to changes in traffic flow due to special events or construction. The flexibility also means VIA and the city can add BRT lines around the region by simply creating a new route and configuring the new detection zones accordingly. This custom solution can be easily implemented in other cities across the United States.

“This solution allows riders to get to their destination on time, and it will ultimately encourage more usage of the bus system as reliability improves, reducing congestion and greenhouse emissions as people switch from car to bus travel,” said Frank LoPresti, vice president of Siemens Road and City Mobility business. “This solution can be implemented in any U.S. city and is a perfect example of how our new technology improves the quality of life of riders while avoiding expensive construction and traffic delays associated with installation. Siemens is excited to work with San Antonio to offer such innovative infrastructure improvements.”

The intelligent transportation system operates through Siemens NextConnect software and Trapeze Group’s currently installed GPS system. When a bus is in a virtual detection zone, the transit system sends a signal priority request to the Siemens i2 traffic management system. The request is relayed to the intersection traffic controller which requests the traffic system to provide a green light for the approaching transit vehicle.

“VIA has been a valued customer for more than 15 years, and they are an award-winning agency for good reason. Their systems and processes are state of the art, and their customer-centric focus is to be applauded,” stated John Hines, president of Trapeze Group. “VIA understands that utilising an enterprise solution such as Trapeze for their transit hardware and software enables them to provide these customer-centric processes and services, from real time information to advanced scheduling that provides better service and GPS technologies to know where the bus is at all times. The agency is a pioneer embracing technology systems and coming up with innovative ways to utilise Trapeze to the maximum benefit of both the agency and their customers.”

Related Content

  • December 6, 2013
    Transmax trials emergency vehicle ‘green wave’
    Existing equipment used in Australian emergency vehicle ‘green wave’ trial. Despite the lights and sirens, accidents between the motoring public and emergency vehicles on their way to/from the scene of an incident are relatively frequent. Figures from various sources indicate that road accidents are the second most frequent cause of death for on-duty fire fighter fatalities and that more than 90% of ambulance and fire engine accidents occur when the lights are on and the sirens wailing. Other studies indica
  • January 13, 2023
    Signal prioritisation as silver bullet
    We can’t keep building roads to solve congestion. But help is available: transit signal prioritisation can easily reduce traffic and bring back riders to mass transit, says Bobby Lee of Lyt
  • June 2, 2015
    TransCore partnership with NYC for Transit Signal Priority pilot program
    TransCore partnered with New York City to complete a Transit Signal Priority (TSP) pilot program – a cost-effective citywide deployment to provide priority treatment for city buses and emergency responders. NYC saves millions by leveraging in-vehicle technology and its advanced traffic control system that manages over 12,800 intersections. In addition, TSP has reduced NYC Select Bus Service travel times from Staten Island to the Bronx up to 18.4%; average speeds improved up to 22.6%; and bus ridership incre
  • January 27, 2012
    Integrate systems to reduce roadside infrastructure
    David Crawford reviews promising current developments. Instrumentation of the road infrastructure has grown to become one of the most dynamic sectors of the ITS industry. Drivers for its deployment include global concerns over the commercial and environmental pressures of traffic congestion, the importance of keeping drivers informed throughout their journeys, and the need to reduce accident rates and promote the safety of all road users, for example by enforcing traffic safety rules.