Skip to main content

Rolls-Royce and VTT partner to develop smart ships

Rolls-Royce and VTT Technical Research Centre of Finland have announced a strategic partnership to design, test and validate the first generation of remote and autonomous ships. The new partnership will combine and integrate the two company’s unique expertise to make such vessels a commercial reality. Rolls-Royce is pioneering the development of remote controlled and autonomous ships and believes a remote controlled ship will be in commercial use by the end of the decade. The company is applying technol
November 15, 2016 Read time: 2 mins
4348 Rolls-Royce and 814 VTT Technical Research Centre of Finland have announced a strategic partnership to design, test and validate the first generation of remote and autonomous ships. The new partnership will combine and integrate the two company’s unique expertise to make such vessels a commercial reality.

Rolls-Royce is pioneering the development of remote controlled and autonomous ships and believes a remote controlled ship will be in commercial use by the end of the decade. The company is applying technology, skills and experience from across its businesses to this development.

VTT has deep knowledge of ship simulation and extensive expertise in the development and management of safety-critical and complex systems in demanding environments such as nuclear safety. They combine physical tests such as model and tank testing, with digital technologies, such as data analytics and computer visualisation. They will also use field research to incorporate human factors into safe ship design. As a result of working with the Finnish telecommunications sector, VTT has extensive experience of working with 5G mobile phone technology and wi-fi mesh networks. VTT has the first 5G test network in Finland.  

Working with VTT will allow Rolls-Royce to assess the performance of remote and autonomous designs through the use of both traditional model tank tests and digital simulation, allowing the company to develop functional, safe and reliable prototypes.

Related Content

  • April 26, 2013
    ITS asset management matters
    Maintenance of on-road ITS kit needs to become more sophisticated; while new technologies can deliver better road maintenance. David Crawford investigates both sides of the issue "Good information is key to effective ITS asset maintenance,” says Ian Routledge of the Ian Routledge Consultancy (IRC), whose Imtrac (Information Management for TRAffic Control) system is poised for European expansion. Developed as an ‘intelligent filing cabinet’ for storing information about on-road equipment, the online database
  • October 17, 2019
    Getting C/AVs from pipedream to reality
    The UK government has suggested that driverless cars could be on the roads by 2021. But designers and engineers are grappling with a number of difficult issues, muses Chris Hayhurst of MathWorks Earlier this year, the UK government made the bold statement that by 2021, driverless cars will be on the UK’s roads. But is this an achievable reality? Driverless technology already has its use cases on our roads, with levels of autonomy ranked on a scale. At one end of the spectrum, level 1 is defined by th
  • August 12, 2015
    Virtual reality laboratory opens
    UK-based technology innovation centre, Transport Systems Catapult (TSC), has announced the opening of a ‘visualisation laboratory’ at its headquarters in Milton Keynes. The laboratory will allow designers and engineers to use cutting edge virtual reality technology to improve the UK’s transport network. The laboratory includes the UK’s first commercially available omni-directional treadmill built by Swedish company Omnifinity and features virtual reality built by local firm Virtual Viewing. The omni-d
  • January 30, 2012
    IntelliDrive, connectivity, safety, mobility and the environment?
    Shelley Row, Director of the ITS Joint Program Office, US Department of Transportation, details the new five-year ITS Strategic Research Plan. Imagine a world where vehicles of all types can talk to each other in order to reduce or eliminate crashes, where vehicles can talk to traffic signals to eliminate unnecessary stops, where travellers can get accurate travel time information about all modes and route options, and where transportation managers have data which allows them to accurately assess multimodal