Skip to main content

Rolls-Royce and VTT partner to develop smart ships

Rolls-Royce and VTT Technical Research Centre of Finland have announced a strategic partnership to design, test and validate the first generation of remote and autonomous ships. The new partnership will combine and integrate the two company’s unique expertise to make such vessels a commercial reality. Rolls-Royce is pioneering the development of remote controlled and autonomous ships and believes a remote controlled ship will be in commercial use by the end of the decade. The company is applying technol
November 15, 2016 Read time: 2 mins
4348 Rolls-Royce and 814 VTT Technical Research Centre of Finland have announced a strategic partnership to design, test and validate the first generation of remote and autonomous ships. The new partnership will combine and integrate the two company’s unique expertise to make such vessels a commercial reality.

Rolls-Royce is pioneering the development of remote controlled and autonomous ships and believes a remote controlled ship will be in commercial use by the end of the decade. The company is applying technology, skills and experience from across its businesses to this development.

VTT has deep knowledge of ship simulation and extensive expertise in the development and management of safety-critical and complex systems in demanding environments such as nuclear safety. They combine physical tests such as model and tank testing, with digital technologies, such as data analytics and computer visualisation. They will also use field research to incorporate human factors into safe ship design. As a result of working with the Finnish telecommunications sector, VTT has extensive experience of working with 5G mobile phone technology and wi-fi mesh networks. VTT has the first 5G test network in Finland.  

Working with VTT will allow Rolls-Royce to assess the performance of remote and autonomous designs through the use of both traditional model tank tests and digital simulation, allowing the company to develop functional, safe and reliable prototypes.

For more information on companies in this article

Related Content

  • Multimodal simulation helps to improve the airport experience
    December 15, 2022
    The vision of the IMHOTEP project is a multimodal European transport system, where different modes of travel are seamlessly integrated to give passengers a great door-to-gate and gate-to-door experience. Marcel Sala, scientific researcher at Aimsun, explains how this works at airports
  • Developments in urban traffic management and control
    February 1, 2012
    Mark Cartwright, Centaur Consulting, discusses developments in urban traffic management and control. Despite the concept of UTMC (Urban Traffic Management and Control) having been around for some years now, there remains a significant rump of confusion as to its relationship with its similar-sounding cousin UTC (Urban Traffic Control). To many people, the two are one and the same. However, this is not the case.
  • Modelling could reduce traffic mayhem
    May 6, 2016
    A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.
  • Vivacity Labs rolls out AI-controlled junctions 
    November 13, 2020
    Initiative in Manchester, UK, is designed to facilitate higher levels of non-vehicle movements