Skip to main content

Researchers test cost-effective vehicle automation

Researchers at Oxford University in the UK are testing a combination of off-the-shelf technology which could enable a car to drive itself for sections of a familiar route. Dr Ingmar Posner of the University’s mobile robotics group is part of a team working on the car which he believes could affordably reach the showrooms in ten or fifteen years.
April 17, 2013 Read time: 2 mins
Researchers at 7333 University of Oxford in the UK are testing a combination of off-the-shelf technology which could enable a car to drive itself for sections of a familiar route.

Dr Ingmar Posner of the University’s mobile robotics group is part of a team working on the 7334 RobotCar which he believes could affordably reach the showrooms in ten or fifteen years.

The car is fitted with two stereo cameras and two 3D scanning lasers under the front and rear bumpers to ‘learn’ about the route and constantly monitors the immediate area in order to make driving decisions. GPS is not used, as such systems could not provide the coverage, precision and reliability autonomous cars need to safely navigate and, crucially, GPS fails to tell a robotic car anything about its surroundings.

The technology is controlled by prompts on an iPad mounted on the dashboard giving the driver the option of the car taking over for a portion of a familiar route. Touching the screen when prompted selects 'auto drive' and any time the driver can tap the brake pedal to regain control.

Professor Paul Newman from the University Department of Engineering Science said instead of imagining cars driving themselves all of the time, we should imagine cars that can drive themselves some of the time. “The sort of very low cost, low footprint autonomy we are developing is what’s needed for everyday use,” he said.

At the moment it is estimated that the prototype navigation system costs around £5,000. 'Long-term, our goal is to produce a system costing around £100,' says Professor Newman.

The next stage of the research is to enable the new robotic system to understand complex traffic flows and make decisions on its own about which routes to take.

In the US, 5593 Virginia Tech has adapted a vehicle with signals and scanners which give clues to the driver about which way to turn the steering wheel or when to brake.

For more information on companies in this article

Related Content

  • Visa and the power of mass transit transactions
    April 22, 2020
    Contactless payment is the hidden power behind efficient public transportation. Visa’s Ana Reiley tells Adam Hill why buying a latte should be a model for frictionless ticketing 
  • Spin pledges £100,000 to mobility research
    December 3, 2020
    Initial focus is on safety and will include data from Vivacity Labs' AI and IoT sensors 
  • Continental concept vehicle addresses distracted driving
    February 8, 2013
    According to the US Department of Transportation (USDOT), an average of ten drivers in the US is killed and more than 1,100 people are injured every day as a result of accidents caused by distracted drivers. To address this ongoing concern, automotive supplier Continental has developed a concept vehicle, the driver focus vehicle, where driver assistance systems are linked to a highly versatile LED light strip to create a powerful tool against driver distraction. In its driver focus vehicle, Continental has
  • High level support for US DOT decision on vehicle to vehicle technology
    February 4, 2014
    The US Department of Transportation's (DOT) National Highway Traffic Safety Administration (NHTSA) is to begin taking steps to enable vehicle-to-vehicle (V2V) communication technology for light vehicles. This technology would improve safety by allowing vehicles to communicate with each other and ultimately avoid many crashes altogether by exchanging basic safety data, such as speed and position, ten times per second. DOT research indicates that safety applications using V2V technology can address a large