Skip to main content

Researchers test cost-effective vehicle automation

Researchers at Oxford University in the UK are testing a combination of off-the-shelf technology which could enable a car to drive itself for sections of a familiar route. Dr Ingmar Posner of the University’s mobile robotics group is part of a team working on the car which he believes could affordably reach the showrooms in ten or fifteen years.
April 17, 2013 Read time: 2 mins
Researchers at 7333 University of Oxford in the UK are testing a combination of off-the-shelf technology which could enable a car to drive itself for sections of a familiar route.

Dr Ingmar Posner of the University’s mobile robotics group is part of a team working on the 7334 RobotCar which he believes could affordably reach the showrooms in ten or fifteen years.

The car is fitted with two stereo cameras and two 3D scanning lasers under the front and rear bumpers to ‘learn’ about the route and constantly monitors the immediate area in order to make driving decisions. GPS is not used, as such systems could not provide the coverage, precision and reliability autonomous cars need to safely navigate and, crucially, GPS fails to tell a robotic car anything about its surroundings.

The technology is controlled by prompts on an iPad mounted on the dashboard giving the driver the option of the car taking over for a portion of a familiar route. Touching the screen when prompted selects 'auto drive' and any time the driver can tap the brake pedal to regain control.

Professor Paul Newman from the University Department of Engineering Science said instead of imagining cars driving themselves all of the time, we should imagine cars that can drive themselves some of the time. “The sort of very low cost, low footprint autonomy we are developing is what’s needed for everyday use,” he said.

At the moment it is estimated that the prototype navigation system costs around £5,000. 'Long-term, our goal is to produce a system costing around £100,' says Professor Newman.

The next stage of the research is to enable the new robotic system to understand complex traffic flows and make decisions on its own about which routes to take.

In the US, 5593 Virginia Tech has adapted a vehicle with signals and scanners which give clues to the driver about which way to turn the steering wheel or when to brake.

Related Content

  • January 24, 2014
    Ford teams up with MIT and Stanford on automated driving
    Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
  • March 9, 2016
    New research predicts growth of autonomous parking technology
    New research by ABI Research forecasts that shipments of new cars featuring autonomous parking technologies to grow at 35 per cent CAGR between 2016 and 2026 and for revenues to likewise show growth at 29.5 per cent CAGR. ABI Research identifies three phases of autonomous parking, with each successive stage set to gradually displace the former and all three coexisting to some degree over the next decade. Ultimately, technology will reach a point in which the car parks itself entirely, with no driver assi
  • November 22, 2016
    U-M offers open-access automated cars to advance driverless research
    The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground. These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later. The op
  • July 19, 2012
    Digital Light Processing transforms travel information
    David Crawford investigates the potential of new projection technology. Fifty years on from its invention of the microchip, US company Texas Instruments (TI) has compressed the technology into a surface area of just 4.3mm. As such, it forms the heart of a new Pico Digital Light Processing (DLP) system that is set to transform travel information delivery for millions of users on the move - by making it projectable.