Skip to main content

Printed and flexible electronics in vehicles: major opportunity by 2026

A new report from IDTechEx Research, Printed and Flexible Electronics in Automotive Applications 2016-2026, indicates that the market for printed and flexible electronics in vehicles is expected to grow to over US$5.5 billion dollars in the next decade, spearheaded by the projected growth of in-mould electronics and OLED technologies. Printed and flexible electronics are beginning to proliferate, with a variety of components and devices coming to market. Several end-user verticals are expected to benefit
January 27, 2016 Read time: 3 mins
A new report from 6582 IDTechEx Research, Printed and Flexible Electronics in Automotive Applications 2016-2026, indicates that the market for printed and flexible electronics in vehicles is expected to grow to over US$5.5 billion dollars in the next decade, spearheaded by the projected growth of in-mould electronics and OLED technologies.

Printed and flexible electronics are beginning to proliferate, with a variety of components and devices coming to market. Several end-user verticals are expected to benefit from the host of advantages these technologies offer and the automotive sector is no exception.

OLED displays remain the biggest success of organic electronics. In particular, OLED has become the premium display technology for many consumer products such as smartphones, tablets, televisions, and wearables. The industry is now moving from glass substrates to plastic substrates following the trend towards flexible displays, with the two largest manufacturers, 1809 Samsung Display and LG Display, leading the charge and investing in new production lines. Aside from performance advantages that OLEDs bring to the table in terms of color gamut, contrast and power consumption, the benefits of flexible display integration in vehicles include lighter weight and robustness and in many cases, versatility in design and form factor. Moving ahead towards more complex applications than just small passive matrix OLED displays, leading automotive companies such as Audi are embracing active matrix OLEDs and the possibilities they enable, with sleek concepts allowing for demonstrations of where future OLED technologies are heading.

In later years, in addition to flexible OLED panels, transparent displays may also be adopted by the auto industry to transform the windows of vehicles into screens that display heads-up information for drivers. Samsung Display shared some interesting concepts based on augmented reality on its blog recently as shown below.

Inside of the car, the windscreen can display a host of useful contextual information such as vehicle speed, navigation instructions and location-based facts. Outside of the car, the rear windshield can be utilized to communicate safety warnings and other notifications to fellow motorists such as the vehicle’s speed and signals for when the car is braking.

In-mould electronics (IME), a market of a few tens of millions in 2016, is expected to experience the biggest growth in the next decade, reaching almost a billion dollars by 2026.

The formation of car overhead consoles using in-mould electronics is a multi-step process that utilises establishes manufacturing techniques and existing tools. Graphical and functional inks are screen printed, subsequently thermoformed to the desired shape, and finally moulded in the final step. This approach to manufacturing overhead consoles and centre-stacks in vehicles reduces weight and size, and also reduces the size and complexity of the PCBs integrated into vehicles, while affording ease of change in design with minimum or no re-tooling necessary.

Such benefits are already obvious to car manufacturers who are showing significant interest in adopting the technology, with first devices already in production: Canatu’s CNB Touch Sensors are incorporated into a new automotive model for a yet unnamed North American customer of the company, with production and first deliveries having started in 2015.

Related Content

  • February 1, 2012
    Advanced in-vehicle user interface - future developments
    Dave McNamara and Craig Simonds, Autotechinsider LLC, look at human-machine interface development out to 2015. The US auto industry is going through the worst crisis it has faced since the Great Depression. But it has embraced technologies that will produce the best-possible driving experience for the public. Ford was the first OEM to announce in-car internet radio and SYNC, its signature-branded User Interface (UI), is held up as the shining example of change embracement.
  • February 2, 2012
    Variable message signs continue to deliver travel information
    Arguably the 'face' of ITS, variable message signs are far from being a passing solution
  • May 22, 2014
    Self-driving cars ‘a US$87 billion opportunity in 2030’
    The latest research from Lux Research indicates that automakers and technology developers are closer than ever to bringing self-driving cars to market, with basic Level 2 autonomous behaviour already coming to market, in the form of relatively modest self-driving features like adaptive cruise control, lane departure warning, and collision avoidance braking. With these initial steps, automakers are already on the road to some level of autonomy, but costs remain high in many cases. It is the higher levels
  • August 3, 2015
    Electric buses: more billion dollar orders
    China will spend up to one trillion dollars on electric buses over the coming 15 years according to analysts IDTechEx. This will reduce the impact of over 22.5 trillion dollars from air pollution over that time, at least one percent of GDP. More insurrection will occur if corrective action is insufficient because hundreds of thousands are dying from traffic pollution and far more are suffering resultant serious disease. According to the World Health Organisation (WHO), outdoor air pollution caused 3.7 m