Skip to main content

Printed and flexible electronics in vehicles: major opportunity by 2026

A new report from IDTechEx Research, Printed and Flexible Electronics in Automotive Applications 2016-2026, indicates that the market for printed and flexible electronics in vehicles is expected to grow to over US$5.5 billion dollars in the next decade, spearheaded by the projected growth of in-mould electronics and OLED technologies. Printed and flexible electronics are beginning to proliferate, with a variety of components and devices coming to market. Several end-user verticals are expected to benefit
January 27, 2016 Read time: 3 mins
A new report from 6582 IDTechEx Research, Printed and Flexible Electronics in Automotive Applications 2016-2026, indicates that the market for printed and flexible electronics in vehicles is expected to grow to over US$5.5 billion dollars in the next decade, spearheaded by the projected growth of in-mould electronics and OLED technologies.

Printed and flexible electronics are beginning to proliferate, with a variety of components and devices coming to market. Several end-user verticals are expected to benefit from the host of advantages these technologies offer and the automotive sector is no exception.

OLED displays remain the biggest success of organic electronics. In particular, OLED has become the premium display technology for many consumer products such as smartphones, tablets, televisions, and wearables. The industry is now moving from glass substrates to plastic substrates following the trend towards flexible displays, with the two largest manufacturers, 1809 Samsung Display and LG Display, leading the charge and investing in new production lines. Aside from performance advantages that OLEDs bring to the table in terms of color gamut, contrast and power consumption, the benefits of flexible display integration in vehicles include lighter weight and robustness and in many cases, versatility in design and form factor. Moving ahead towards more complex applications than just small passive matrix OLED displays, leading automotive companies such as Audi are embracing active matrix OLEDs and the possibilities they enable, with sleek concepts allowing for demonstrations of where future OLED technologies are heading.

In later years, in addition to flexible OLED panels, transparent displays may also be adopted by the auto industry to transform the windows of vehicles into screens that display heads-up information for drivers. Samsung Display shared some interesting concepts based on augmented reality on its blog recently as shown below.

Inside of the car, the windscreen can display a host of useful contextual information such as vehicle speed, navigation instructions and location-based facts. Outside of the car, the rear windshield can be utilized to communicate safety warnings and other notifications to fellow motorists such as the vehicle’s speed and signals for when the car is braking.

In-mould electronics (IME), a market of a few tens of millions in 2016, is expected to experience the biggest growth in the next decade, reaching almost a billion dollars by 2026.

The formation of car overhead consoles using in-mould electronics is a multi-step process that utilises establishes manufacturing techniques and existing tools. Graphical and functional inks are screen printed, subsequently thermoformed to the desired shape, and finally moulded in the final step. This approach to manufacturing overhead consoles and centre-stacks in vehicles reduces weight and size, and also reduces the size and complexity of the PCBs integrated into vehicles, while affording ease of change in design with minimum or no re-tooling necessary.

Such benefits are already obvious to car manufacturers who are showing significant interest in adopting the technology, with first devices already in production: Canatu’s CNB Touch Sensors are incorporated into a new automotive model for a yet unnamed North American customer of the company, with production and first deliveries having started in 2015.

Related Content

  • June 23, 2016
    Battery vehicle ‘now viable for very long distances’
    The Tesla 3 gets nearly double the range of the Nissan Leaf by using nearly double the amount of battery but engineers are using a multitude of work rounds to do better: aerodynamics, light-weighting even including structural electronics where dumb structure is replaced by supercapacitors or solid state batteries. Add more efficient motors and powertrain, says Dr Peter Harrop, chairman of IDTechEx Research in its report Industrial and Commercial Electric Vehicles on Land 2016-2026. He goes on to say that
  • July 11, 2024
    Movement off the ball is key to World Cup 2026 success
    Warming up! The Fifa World Cup will land in the US in 2026. David Arminas hears how one of the host cities, Seattle, is getting ready for an influx of crowds
  • March 9, 2015
    Next decade will see more HUDs in consumer cars, says report
    Almost one third of consumer vehicles shipping in 2024 will be equipped with some form of heads-up display (HUD), with the bulk of the growth driven by combiner units. Traditional head units are being joined by virtual instrument clusters and HUDs in providing drivers with information relating to navigation, on-board audio and inputs from ADAS systems. These displays will demonstrate strong growth, with the proliferation of connected vehicles requiring adaptable and reconfigurable visual interfaces. There a
  • April 27, 2017
    IDTechEX: electric buses will be a US$165 billion market in 2027
    Industrial and commercial electric vehicles will be a similar market to cars but innovating faster and frequently more profitable for all in the value chain. The most important sector is buses, where innovation often comes before cars because they are less price sensitive. A report by IDTechEx Research, Electric Buses 2017-2027, finds that the market for medium and large hybrid and pure electric buses will be over $165 billion in 2027. In this report IDTechEx show how the Chinese are now dominating the leag