Skip to main content

Printed and flexible electronics in vehicles: major opportunity by 2026

A new report from IDTechEx Research, Printed and Flexible Electronics in Automotive Applications 2016-2026, indicates that the market for printed and flexible electronics in vehicles is expected to grow to over US$5.5 billion dollars in the next decade, spearheaded by the projected growth of in-mould electronics and OLED technologies. Printed and flexible electronics are beginning to proliferate, with a variety of components and devices coming to market. Several end-user verticals are expected to benefit
January 27, 2016 Read time: 3 mins
A new report from 6582 IDTechEx Research, Printed and Flexible Electronics in Automotive Applications 2016-2026, indicates that the market for printed and flexible electronics in vehicles is expected to grow to over US$5.5 billion dollars in the next decade, spearheaded by the projected growth of in-mould electronics and OLED technologies.

Printed and flexible electronics are beginning to proliferate, with a variety of components and devices coming to market. Several end-user verticals are expected to benefit from the host of advantages these technologies offer and the automotive sector is no exception.

OLED displays remain the biggest success of organic electronics. In particular, OLED has become the premium display technology for many consumer products such as smartphones, tablets, televisions, and wearables. The industry is now moving from glass substrates to plastic substrates following the trend towards flexible displays, with the two largest manufacturers, 1809 Samsung Display and LG Display, leading the charge and investing in new production lines. Aside from performance advantages that OLEDs bring to the table in terms of color gamut, contrast and power consumption, the benefits of flexible display integration in vehicles include lighter weight and robustness and in many cases, versatility in design and form factor. Moving ahead towards more complex applications than just small passive matrix OLED displays, leading automotive companies such as Audi are embracing active matrix OLEDs and the possibilities they enable, with sleek concepts allowing for demonstrations of where future OLED technologies are heading.

In later years, in addition to flexible OLED panels, transparent displays may also be adopted by the auto industry to transform the windows of vehicles into screens that display heads-up information for drivers. Samsung Display shared some interesting concepts based on augmented reality on its blog recently as shown below.

Inside of the car, the windscreen can display a host of useful contextual information such as vehicle speed, navigation instructions and location-based facts. Outside of the car, the rear windshield can be utilized to communicate safety warnings and other notifications to fellow motorists such as the vehicle’s speed and signals for when the car is braking.

In-mould electronics (IME), a market of a few tens of millions in 2016, is expected to experience the biggest growth in the next decade, reaching almost a billion dollars by 2026.

The formation of car overhead consoles using in-mould electronics is a multi-step process that utilises establishes manufacturing techniques and existing tools. Graphical and functional inks are screen printed, subsequently thermoformed to the desired shape, and finally moulded in the final step. This approach to manufacturing overhead consoles and centre-stacks in vehicles reduces weight and size, and also reduces the size and complexity of the PCBs integrated into vehicles, while affording ease of change in design with minimum or no re-tooling necessary.

Such benefits are already obvious to car manufacturers who are showing significant interest in adopting the technology, with first devices already in production: Canatu’s CNB Touch Sensors are incorporated into a new automotive model for a yet unnamed North American customer of the company, with production and first deliveries having started in 2015.

For more information on companies in this article

Related Content

  • New film highlights life-saving potential of ISA technology for new cars
    February 1, 2016
    A new film from the European Transport Safety Council (ETSC) makes the case for making intelligent speed assistance (ISA) which can be overridden a standard feature on all new vehicles in Europe. The five-minute video has been launched as the European Commission continues work on the development of the next generation of vehicle safety standards, expected to be launched later this year. A major study for the Commission published last year by consultants TRL found that ISA is one of several new vehicl
  • Report identifies opportunities for road freight carbon and cost reduction
    December 4, 2012
    Switching from diesel to gas, reducing rolling resistance and aerodynamic drag and introducing more hybrid and electric vehicles are identified as key opportunities for further cutting carbon and improving efficiency in the road freight sector, according to a new report commissioned by the Transport Knowledge Transfer Network (TKTN) and the Low Carbon Vehicle Partnership (LowCVP). The report, written by Ricardo-AEA for the project partners, focuses on the key technical opportunities, and identifies options
  • Morocco rail project uses recycled plastic sleepers
    May 21, 2012
    Axion International, which claims to produce the world’s strongest recycled composite plastic industrial building products and railroad crossties (sleepers), has announced the successful completion of its first project with ONCF, the national railway of Morocco. The project provided Axion’s patented recycled plastic composite sleepers for the North African nation.
  • Automotive sensors market projected to grow at almost eight per cent by 2022
    January 20, 2017
    A new report published by Allied Market Research, Automotive Sensors Market by Product and End User - Global Opportunity Analysis and Industry Forecast, 2014-2022, projects that the automotive sensors market was valued at US$22 billion in 2015 and is expected to reach US$37 billion by 2022, growing at a CAGR of 7.5 per cent from 2016 to 2022. Micro-electromechanical systems (MEMS) sensors are expected to dominate this market from 2016 to 2022. Europe will continue to lead, accounting for approximately 35