Skip to main content

Nissan’s new Serena comes equipped with autonomous technology

Nissan Motor Company’s new Serena, due to go on sale in Japan in August, will come equipped with the company’s ProPILOT autonomous drive technology, designed for highway use in single-lane traffic. ProPILOT will assist with steering, accelerator and braking, controlled from a mono camera equipped with image processing software which recognises road and traffic situations, as well as lane markers. The system is activated and deactivated b y the driver using a switch on the steering wheel. Once activate
July 15, 2016 Read time: 2 mins
838 Nissan Motor Company’s new Serena, due to go on sale in Japan in August, will come equipped with the company’s ProPILOT autonomous drive technology, designed for highway use in single-lane traffic.

ProPILOT will assist with steering, accelerator and braking, controlled from a mono camera equipped with image processing software which recognises road and traffic situations, as well as lane markers. The system is activated and deactivated b y the driver using a switch on the steering wheel.

Once activated, ProPILOT automatically controls the distance between the vehicle and the preceding vehicle, using a speed preset by the driver (between approximately 30 km/h and 100 km/h). The system also keeps the car in the middle of the highway lane by reading lane

ProPILOT automatically applies the brakes to bring the vehicle to a complete halt, after which the vehicle will remain in place even if the driver’s foot is off the brake pedal. When ready to resume driving, ProPILOT is activated when the driver touches the switch again or lightly presses the accelerator.

ProPILOT will be introduced into other vehicles, including the Qashqai in Europe in 2017. There are also plans for the technology to be introduced in the US and China markets

A multi-lane autonomous driving technology will enable automatic lane changes on highways and is planned for introduction in 2018 while autonomous driving on urban roads and in intersections is planned for launch in 2020.

For more information on companies in this article

Related Content

  • Legalities of in-vehicle systems and cooperative infrastructures
    February 1, 2012
    Paul Laurenza of Dykema Gossett PLLC discusses the paths which lawmakers may go down on the route to making in-vehicle systems and cooperative infrastructures a reality. The question of whether or not to mandate in-vehicle systems for safety and other applications is a vexed one. There is a presumption on some parts that going down the road of forcing systems' fitment is somehow too domineering or restricting. Others would argue that it is the only realistic way of ensuring that systems achieve widespread d
  • AVs in the Netherlands? Don't forget the bikes
    June 11, 2019
    The Netherlands’ famous love of bicycles could be a problem when it comes to the deployment of autonomous vehicles there. And there might be other obstacles, finds Ben Spencer Of all the countries on the planet, the Netherlands is most ready to start deploying autonomous vehicles (AVs), according to a survey by KPMG earlier this year. On the face of it, this is good news: coming first out of 25 countries listed in the Autonomous Vehicles Readiness Index (AVRI) for the second consecutive year puts the Du
  • Kapsch outlines tolling options to combat traffic congestion
    January 11, 2017
    Michael Maitland from Kapsch TrafficCom looks at how the various forms of tolling can help authorities combat traffic congestion and air quality problems while simultaneously raising revenue.
  • Nissan’s new analysis method may boost driving range of EVs
    May 16, 2016
    Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo