Skip to main content

New research assesses potential for driver-assistive truck platooning

The Phase One Final Report of the Driver-Assistive Truck Platooning (DATP) initiative was recently released by the research team. The DATP truck platooning research, which was funded by a grant from the US Department of Transportation's Exploratory Advanced Research program, utilises radar, vehicle-to-vehicle communications and video technologies to decrease over-the-road truck headways, with the objective of improving fuel economy without compromising safety.
May 29, 2015 Read time: 2 mins

The Phase One Final Report of the Driver-Assistive Truck Platooning (DATP) initiative was recently released by the research team.  The DATP truck platooning research, which was funded by a grant from the US Department of Transportation's Exploratory Advanced Research program, utilises radar, vehicle-to-vehicle communications and video technologies to decrease over-the-road truck headways, with the objective of improving fuel economy without compromising safety.

As a core team member of the project, the 5478 American Transportation Research Institute (ATRI) was involved in multiple tasks including the development and assessment of trucking industry user requirements.  It was also the project lead for development of the business case for truck platooning.

Some of the Phase 1 results identified include: Up to 10 percent fuel economy for the trailing truck, and up to 5 percent fuel economy for the leading truck; Truckload and line-haul LTL operations would likely be the greatest beneficiaries of a platooning system, particularly among larger fleets; Fleets and drivers who operate average truck trips of more than 500 miles would experience the highest returns on investment from platooning.

Modellers at Auburn University confirmed that platooning would not negatively impact traffic flows, and could improve traffic flows if truck market penetration reached 60 per cent;

The research also found that platoon formation in some operations appears to be feasible, based on a case study using actual truck movement data from ATRI's truck GPS database; and small fleets and owner-operators required an investment payback period of 10 months, while larger fleets had a mean payback expectation of 18 months.

In Phase 2 of the DATP project, the research team will be conducting both test-track and on-road pilot testing of the system.  In addition, the team will monitor and assess a variety of human factors considerations including driver satisfaction, driver training requirements and driver operational experiences.  The business case analysis will be extended based on these results.

The DATP research team is led by Auburn University and includes ATRI, Bishop Consulting, Peloton Technology, Peterbilt Trucks, and Meritor Wabco.

Related Content

  • January 30, 2012
    Mounting benefits of dynamic tolling project
    Wisconsin's four-year HOT lanes pilot project, launched in May 2008, cost US$18.8 million to construct. Halfway into the project, which uses variably priced, or dynamic, tolling to improve highway efficiency, the benefits are mounting. The problem was obvious, and frustrating, to anyone who ever sat in bumper-to-bumper traffic on State Route 167 and watched a lone car whiz by every 20 seconds or so in the carpool lane. But for planners at the Washington State Department of Transportation, the conundrum was
  • March 2, 2012
    Truck fleets to get enhanced safety data
    Iteris, has announced an agreement with Qualcomm to deliver safety data to trucking fleets.
  • November 9, 2017
    Mobinet counters weighty cross border concerns
    A Mobinet pilot is combining onboard weighing with V2X comms to streamline vehicle weight enforcement. David Crawford reports. Pan-European, cross-border weigh-in-motion (WIM) for trucks is now a practical possibility, following successful Scandinavian trials within the EU-co-funded Mobinet (Internet of Mobility) programme. New technology is using strain sensors, located on load-bearing components and routinely installed in truck fleet management systems.
  • March 1, 2013
    Airborne traffic monitoring - the future?
    A new frontier in the quest to monitor road traffic is opening up… but using airborne drones to reduce the jams comes with some thorny issues. Chris Tindall reports. Imagine if you could rely on a system that provided all the data you needed to regulate traffic flow, route vehicles and respond swiftly to emergencies for a fraction of the cost of piloting a helicopter. That system exists, but as engineers and traffic managers start to explore the potential of unmanned aerial vehicles (UAVs) – more commonly k