Skip to main content

New research assesses potential for driver-assistive truck platooning

The Phase One Final Report of the Driver-Assistive Truck Platooning (DATP) initiative was recently released by the research team. The DATP truck platooning research, which was funded by a grant from the US Department of Transportation's Exploratory Advanced Research program, utilises radar, vehicle-to-vehicle communications and video technologies to decrease over-the-road truck headways, with the objective of improving fuel economy without compromising safety.
May 29, 2015 Read time: 2 mins

The Phase One Final Report of the Driver-Assistive Truck Platooning (DATP) initiative was recently released by the research team.  The DATP truck platooning research, which was funded by a grant from the US Department of Transportation's Exploratory Advanced Research program, utilises radar, vehicle-to-vehicle communications and video technologies to decrease over-the-road truck headways, with the objective of improving fuel economy without compromising safety.

As a core team member of the project, the 5478 American Transportation Research Institute (ATRI) was involved in multiple tasks including the development and assessment of trucking industry user requirements.  It was also the project lead for development of the business case for truck platooning.

Some of the Phase 1 results identified include: Up to 10 percent fuel economy for the trailing truck, and up to 5 percent fuel economy for the leading truck; Truckload and line-haul LTL operations would likely be the greatest beneficiaries of a platooning system, particularly among larger fleets; Fleets and drivers who operate average truck trips of more than 500 miles would experience the highest returns on investment from platooning.

Modellers at Auburn University confirmed that platooning would not negatively impact traffic flows, and could improve traffic flows if truck market penetration reached 60 per cent;

The research also found that platoon formation in some operations appears to be feasible, based on a case study using actual truck movement data from ATRI's truck GPS database; and small fleets and owner-operators required an investment payback period of 10 months, while larger fleets had a mean payback expectation of 18 months.

In Phase 2 of the DATP project, the research team will be conducting both test-track and on-road pilot testing of the system.  In addition, the team will monitor and assess a variety of human factors considerations including driver satisfaction, driver training requirements and driver operational experiences.  The business case analysis will be extended based on these results.

The DATP research team is led by Auburn University and includes ATRI, Bishop Consulting, Peloton Technology, Peterbilt Trucks, and Meritor Wabco.

For more information on companies in this article

Related Content

  • GridMatrix goes back to the future in New York City
    September 25, 2023
    Legacy traffic management infrastructure doesn’t have to be a marker of the past: software upgrades can bring it into the present in a cost-effective and timely way, says Gordon Feller
  • TRA 2018: Vienna conference highlights
    June 5, 2018
    Digitalisation of transport systems, the regulation of new technologies and more charging points for electric vehicles in cities were among the talking points at this year’s Transport Research Arena conference. Alan Dron sifts through the highlights in Vienna. More than 3,000 transport sector specialists converged on TRA 2018, where the four-day event’s agenda included scores of topics covering regulation, technology and the effect of the digitalisation of road transport systems. Who should control those
  • Mexico City seeks solutions to improve air quality
    December 6, 2017
    David Crawford ponders prospects for one of the world’s most congested and polluted cities. In 1992, the United Nations named Mexico City as the world’s most polluted urban centre. In the first half of 2016, following the updating of pollution alert limits to meet international standards, Mexico recorded 115 days where ozone concentrations exceeded the acute exposure health limit.
  • Cost-effective driver drowsiness detection
    May 2, 2012
    Bosch has revealed that its driver drowsiness detection system, first introduced as a standard feature in 2010, in the new Volkswagen Passat is being fitted to the new Passat Alltrack. Fatigue and microsleep at the wheel are often the cause of serious accidents. However, the initial signs of fatigue can be detected before a critical situation arises, and the Bosch system can do this by monitoring steering movements and advising drivers to take a break in time. The required information is provided either by