Skip to main content

Mazda develops system to avoid car-streetcar collisions

The University of Tokyo and Mazda Motor Corporation have jointly developed a system involving wireless communications technology to prevent collisions between cars and streetcars (or trams). The system’s car-mounted sensors can detect signals from a streetcar up to 100 metres away, in contrast with the current range of just a few dozen metres for conventional sensors on cars. The new system is designed to prevent collisions between vehicles and oncoming streetcars by allowing their position and direction
September 5, 2013 Read time: 1 min
The 5315 University of Tokyo and 1844 Mazda Motor Corporation have jointly developed a system involving wireless communications technology to prevent collisions between cars and streetcars (or trams).

The system’s car-mounted sensors can detect signals from a streetcar up to 100 metres away, in contrast with the current range of just a few dozen metres for conventional sensors on cars. The new system is designed to prevent collisions between vehicles and oncoming streetcars by allowing their position and direction to be automatically monitored, according to the university.

The experimental ASV-5 version of Mazda’s Atenza sedan will be deployed for trials in Hiroshima. Streetcars, which are used by around 150,000 people per day in Hiroshima, form an essential part of the city’s public transportation system.

For more information on companies in this article

Related Content

  • Wi-SUN: here’s why mesh networking works
    May 10, 2019
    There are several networking options available for smart city planners. Phil Beecher of Wi-SUN Alliance makes the case for wireless mesh networks when it comes to rolling out IoT solutions The Internet of Things (IoT) is growing fast. Connecting thousands of sensors and control systems in bi-directional networks is paving the way for a new generation of smart city and transport infrastructures. For many of these applications, wireless connectivity is essential where cable installation is not practical.
  • A new beginning for travel information, based on users' needs
    February 3, 2012
    Despite its name, the EU's forthcoming SUNSET project could represent a new beginning for travel information services. Here, Susan Grant-Muller and Frances Hodgson from the Institute for Transport Studies at the University of Leeds detail a project which is intended to exert a greater influence on network users' travel habits
  • P3s offer new options for public transit agencies
    March 28, 2018
    David Crawford welcomes new US guidance on public-private partnerships in the public transit sector. Public-private partnerships (P3s) are becoming increasingly favoured as a means of cost-effectively delivering much-needed public transit projects across the US. Previously, researched examples have tended to be on the large-scale while information on the potential for smaller, more localised schemes has been comparatively sparse. In a bid to fill that gap, the ‘Public Transportation Guidebook for Small
  • University research shows a few self-driving cars can improve traffic flow
    May 15, 2017
    The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by the University of Illinois at Urbana-Champaign. Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engine