Skip to main content

Mazda develops system to avoid car-streetcar collisions

The University of Tokyo and Mazda Motor Corporation have jointly developed a system involving wireless communications technology to prevent collisions between cars and streetcars (or trams). The system’s car-mounted sensors can detect signals from a streetcar up to 100 metres away, in contrast with the current range of just a few dozen metres for conventional sensors on cars. The new system is designed to prevent collisions between vehicles and oncoming streetcars by allowing their position and direction
September 5, 2013 Read time: 1 min
The 5315 University of Tokyo and 1844 Mazda Motor Corporation have jointly developed a system involving wireless communications technology to prevent collisions between cars and streetcars (or trams).

The system’s car-mounted sensors can detect signals from a streetcar up to 100 metres away, in contrast with the current range of just a few dozen metres for conventional sensors on cars. The new system is designed to prevent collisions between vehicles and oncoming streetcars by allowing their position and direction to be automatically monitored, according to the university.

The experimental ASV-5 version of Mazda’s Atenza sedan will be deployed for trials in Hiroshima. Streetcars, which are used by around 150,000 people per day in Hiroshima, form an essential part of the city’s public transportation system.

Related Content

  • Traffic management to the fore at Vision 2014
    December 8, 2014
    Colin Sowman reviews some of the traffic-related exhibits at the 2014 Vision Show in Stuttgart. Traffic was a major theme at this years’ Vision Show in Stuttgart and several manufacturers used the exhibition to highlight their traffic-related equipment and applications.
  • University develops rail crossing safety technology
    June 14, 2013
    Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings. The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibili
  • Mcity test centre for connected and driverless vehicles now open
    July 21, 2015
    The University of Michigan has opened Mcity, the world's first controlled environment specifically designed to test the potential of connected and automated vehicle technologies that will lead the way to mass-market driverless cars. Mcity was designed and developed by U-M's interdisciplinary MTC, in partnership with the Michigan Department of Transportation (MDOT). The 32-acre simulated urban and suburban environment includes a network of roads with intersections, traffic signs and signals, streetligh
  • Advanced Driver Assistance Systems: a solution or another problem?
    November 27, 2013
    Do Advanced Driver Assistance Systems represent a positive step forward for safety, or something of a safety risk? Jason Barnes discusses the issue with leading industry figures. Advanced Driver Assistance Systems (ADAS) are already common. Anti-lock brakes or electronic stability control are well understood and are either fitted as standard or frequently requested by new vehicle buyers. More advanced ADAS features are appearing on many top-end vehicles and the trickle-down has already started. Adaptive