Skip to main content

Mazda develops system to avoid car-streetcar collisions

The University of Tokyo and Mazda Motor Corporation have jointly developed a system involving wireless communications technology to prevent collisions between cars and streetcars (or trams). The system’s car-mounted sensors can detect signals from a streetcar up to 100 metres away, in contrast with the current range of just a few dozen metres for conventional sensors on cars. The new system is designed to prevent collisions between vehicles and oncoming streetcars by allowing their position and direction
September 5, 2013 Read time: 1 min
The 5315 University of Tokyo and 1844 Mazda Motor Corporation have jointly developed a system involving wireless communications technology to prevent collisions between cars and streetcars (or trams).

The system’s car-mounted sensors can detect signals from a streetcar up to 100 metres away, in contrast with the current range of just a few dozen metres for conventional sensors on cars. The new system is designed to prevent collisions between vehicles and oncoming streetcars by allowing their position and direction to be automatically monitored, according to the university.

The experimental ASV-5 version of Mazda’s Atenza sedan will be deployed for trials in Hiroshima. Streetcars, which are used by around 150,000 people per day in Hiroshima, form an essential part of the city’s public transportation system.

For more information on companies in this article

Related Content

  • MaaS must be seamless and invisible - or forget it
    June 5, 2018
    MaaS experts from around the world converged on ITS International’s MaaS Market Atlanta conference to talk about how MaaS can be implemented in the US. Andrew Bardin Williams had a front row seat. Transportation experts from around the world gathered in the US earlier this month to discuss the future of Mobility as a Service (MaaS) and how it could be deployed in the US market. While most attendees at ITS International’s MaaS Market Atlanta conference were familiar with the MaaS concept, the US’s highly
  • Viaduct deck renewal creates detour dilemma for MassDOT
    May 26, 2016
    As the deck renewal of the I-91 viaduct in Springfield gets underway, David Crawford looks at the preparation and planning to ease the resulting traffic congestion. Accommodating the deck renewal of a 4km-long/four-lanes in each direction viaduct in the heart of Springfield (Massachusetts’ third largest city), has involved the state’s Department of Transportation (MassDOT) in a massive exercise in transport research and ITS-based area-wide preplanning and traffic management. Supporting a workzone of well ab
  • Deriving data to tackle tribal road crashes
    June 14, 2017
    David Crawford looks at a new initiative to deal with high crash and fatality rates on America’s tribal roads. According to the US Centres for Disease Control and Prevention, on average two members of the country’s indigenous communities - American Indians or Alaskan Natives (AI/AN) - die every day in motor vehicle crashes. This represents a far higher percentage than that of the country’s general population. Historically, the US states with the worst records are Wyoming, South Dakota, Montana, North Dakot
  • IRD complements WIM with tyre under-inflation detection
    May 8, 2015
    To complement its existing WIM offering, IRD has introduced a system to detect under-inflated and flat tyres at highway speeds. Tyre inflation pressure has both safety and economic impacts for road users and none more so than with commercial vehicles. An underinflated tyre has decreased directional control, increased risk of catastrophic failure, and negatively impacts tyre life and fuel economy. In June 2014 the USDOT published Large Truck and Bus Crash Facts 2012 in which the Federal Motor Carrier Safety