Skip to main content

LeddarTech unveils LiDAR IC roadmap towards autonomous driving

Canadian solid-state advanced driver assistance systems (ADAS) LiDAR specialist LeddarTech has unveiled key insights about its LeddarCore IC roadmap, which aims to enable low-cost, high-performance solid-state LiDARs for multiple automotive safety applications, from ADAS to autonomous driving. LeddarTech has two LeddarCore IC programs are in progress: the LC-A2, targeting the automation layers 1 to 3, with the first samples scheduled for the second half of 2017, and the LC-A3, which will meet the specifi
June 30, 2016 Read time: 2 mins
Canadian solid-state advanced driver assistance systems (ADAS) LiDAR specialist 84 LeddarTech has unveiled key insights about its LeddarCore IC roadmap, which aims to enable low-cost, high-performance solid-state LiDARs for multiple automotive safety applications, from ADAS to autonomous driving.

LeddarTech has two LeddarCore IC programs are in progress: the LC-A2, targeting the automation layers 1 to 3, with the first samples scheduled for the second half of 2017, and the LC-A3, which will meet the specifications for automation layers 2 to 4, with an expected sample availability in 2018.

This next-generation LeddarCore ICs enables: Affordable ADAS and autonomous functions, where LiDAR replaces or complements camera and/or radar; High-density 3D point cloud LiDAR for higher levels of autonomous driving; Support for both flash and beam steering LiDAR.

With ranges reaching 250 m, a field of view up to 140 degrees and up to 480,000 points per second (with a resolution down to 0.25 degrees both horizontal and vertical), the LeddarCore ICs will enable the design of affordable LiDARs for all levels of autonomous driving, including the capability to map the environment over 360 degrees around the vehicle.

Analysts expect LiDARs to become a central element of the autonomous car’s sensor suite. The chipsets’ raw data output will make them perfectly suited for advanced sensor fusion solutions that combine data from various types of sensors to provide a holistic perceptual mapping of a vehicle’s surroundings.

The company is currently in the process of selecting a partner for the design, manufacturing and joint commercialisation effort of the new LeddarCore ICs on a large scale.

For more information on companies in this article

Related Content

  • Applanix launch platform to speed up AV development programs
    January 25, 2018
    Appllanix has launched its Autonomy Development Platform to provide automakers, tier 1 vehicle supplier and truck makers with the hardware, software, engineering and integration services necessary to accelerate development programs for on-road and off-road autonomous vehicles. It combines Applanix’s GNSS-inertial positioning technologies with customized integration and engineering services for each stage of the development process.
  • Ford invests in next-generation driver assist technology
    November 4, 2016
    In addition to the driver assistance systems already in use on its card, new technology being developed by Ford includes cross-traffic alert with braking technology to help reduce parking stress by detecting people and objects about to pass behind the vehicle, providing a warning to the driver and then automatically braking if the driver does not respond. Rear wide-view camera, on the in-car display, will offer an alternative wide-angle view of the rear of the vehicle. Enhanced active park assist will paral
  • Parifex picks Ouster as Lidar supplier
    June 8, 2021
    OS1 sensor chosen for precision in speed enforcement and data collection systems
  • Driver aids make inroads on improving safety
    November 12, 2015
    In-vehicle anti-collision systems continue to evolve and could eliminate some incidents altogether. John Kendall rounds up the current developments. A few weeks ago, I watched a driver reverse a car from a parking bay at right angles to the road, straight into a car driving along the road. The accident happened at walking pace, no-one was hurt and both cars had body panels that regain their shape after a low speed shunt.