Skip to main content

LeddarTech unveils LiDAR IC roadmap towards autonomous driving

Canadian solid-state advanced driver assistance systems (ADAS) LiDAR specialist LeddarTech has unveiled key insights about its LeddarCore IC roadmap, which aims to enable low-cost, high-performance solid-state LiDARs for multiple automotive safety applications, from ADAS to autonomous driving. LeddarTech has two LeddarCore IC programs are in progress: the LC-A2, targeting the automation layers 1 to 3, with the first samples scheduled for the second half of 2017, and the LC-A3, which will meet the specifi
June 30, 2016 Read time: 2 mins
Canadian solid-state advanced driver assistance systems (ADAS) LiDAR specialist 84 LeddarTech has unveiled key insights about its LeddarCore IC roadmap, which aims to enable low-cost, high-performance solid-state LiDARs for multiple automotive safety applications, from ADAS to autonomous driving.

LeddarTech has two LeddarCore IC programs are in progress: the LC-A2, targeting the automation layers 1 to 3, with the first samples scheduled for the second half of 2017, and the LC-A3, which will meet the specifications for automation layers 2 to 4, with an expected sample availability in 2018.

This next-generation LeddarCore ICs enables: Affordable ADAS and autonomous functions, where LiDAR replaces or complements camera and/or radar; High-density 3D point cloud LiDAR for higher levels of autonomous driving; Support for both flash and beam steering LiDAR.

With ranges reaching 250 m, a field of view up to 140 degrees and up to 480,000 points per second (with a resolution down to 0.25 degrees both horizontal and vertical), the LeddarCore ICs will enable the design of affordable LiDARs for all levels of autonomous driving, including the capability to map the environment over 360 degrees around the vehicle.

Analysts expect LiDARs to become a central element of the autonomous car’s sensor suite. The chipsets’ raw data output will make them perfectly suited for advanced sensor fusion solutions that combine data from various types of sensors to provide a holistic perceptual mapping of a vehicle’s surroundings.

The company is currently in the process of selecting a partner for the design, manufacturing and joint commercialisation effort of the new LeddarCore ICs on a large scale.

Related Content

  • December 20, 2023
    Outsight and Innovusion focus on Lidar in ITS
    Agreement between companies will allow 3D perception tech deployment 'at a large scale'
  • May 10, 2017
    3M reflect on why CAVs need lines and signs
    Tammy Meehan and Thomas Hedblom of 3M consider the ongoing development of technology needed to introduce connected and autonomous vehicles. The transportation industry is in the midst of the most dramatic shift since Henry Ford introduced horseless carriages. Already we are seeing the increased use of advanced driver assistance systems (ADAS) which, along with the introduction of autonomous vehicles in the next few decades, will bring profound changes to vehicles and the environment in which they operate.
  • July 19, 2016
    Industry collaboration ‘the key to avoiding autonomous driving traffic congestion’
    A joint whitepaper published by Here and SBD argues that new levels of vehicle automation will increase traffic congestion in the foreseeable future and it's up to the automotive industry to enhance its collaboration in order to create a seamless transition as we reach these new levels of automation. According to co-author of the study, Andrew Hart, director at SBD, autonomous cars have the potential in the long-term to revolutionise mobility and radically improve the safety of our roads. However, the pa
  • March 17, 2014
    Proposed system to take guesswork out of choosing a freeway lane
    A fledgling advanced lane management assist system can take the guesswork out of selecting the right lane on a congested freeway, as its inventor Robert Gordon explains. As drivers we’ve all done it and control room staff see it all the time – motorists on congested freeways switching into what they perceive is a faster lane, only to come to a halt a few moments later and watch vehicles in the other lanes continue to move past. Now, by re-analysing readily available data in an advanced lane management as