Skip to main content

Kymeta tests antenna for satellite-based internet connectivity to support autonomous driving

Global connectivity specialist Kymeta has successfully connected its 20 cm mTenna satellite antenna subsystem module (ASM) for the consumer connected car industry to the Intelsat satellite constellation. This test continues Kymeta's progress toward bringing high throughput, secure mobile connectivity to the automotive industry and follows the partnership announced with Toyota Motor Corporation in 2016. The test showcased that Kymeta mTenna technology for consumer vehicles could successfully connect to In
February 24, 2017 Read time: 2 mins
Global connectivity specialist Kymeta has successfully connected its 20 cm mTenna satellite antenna subsystem module (ASM) for the consumer connected car industry to the Intelsat satellite constellation. This test continues Kymeta's progress toward bringing high throughput, secure mobile connectivity to the automotive industry and follows the partnership announced with Toyota Motor Corporation in 2016.

The test showcased that Kymeta mTenna technology for consumer vehicles could successfully connect to Intelsat's Epic satellite network. The test also demonstrated that Kymeta mTenna technology can transmit and receive data with a single aperture, connect to the internet and access YouTube videos and conduct a Skype call, all within its first attempt.

Currently, the only way to take advantage of high throughput satellites (HTS) is with a large, traditional satellite dish with moving parts. The Kymeta satellite solution aims to eliminate the need for a gimballed dish and provide terabyte level capacity to cars allowing broadband level connectivity even in areas that have no terrestrial coverage.

The test is the first step in making a connected car it’s most secure and connected at a global scale. This successful testing was conducted with Intelsat, the world's leading provider of satellite services, which has a partnership agreement with Kymeta to enable satellite connectivity for the auto industry.

Related Content

  • Developments in smarter multi-modal fare paynment
    February 2, 2012
    This section pulls together all the multi-modal topics in each issue. Subject matter will include smartcards; ticketing and payment systems; passenger information systems; fleet management for buses, trains and light rail; park and ride systems; on-line access to real-time information via Internet portals
  • Scandinavian cloud-based C-ITS project closer to reality
    February 17, 2015
    Volvo Cars, the Swedish Transport Administration and the Norwegian Public Roads Administration are working together on a project to enable cars to share information about conditions that relate to road friction, such as icy patches, or if another driver in the area has its hazard lights on. The research project is getting closer to real-world implementation; with the technology in place, the testing and validation phase is about to begin. In this phase, Volvo Cars will expand the test fleet 20-fold and broa
  • Government funding to get hydrogen cars moving
    October 10, 2014
    The arrival of hydrogen cars on UK roads is a step closer today as Business Minister Matthew Hancock announced up to US$17.6 million of funding from Government and industry to help prepare the UK for the roll-out of hydrogen fuel cell electric vehicles (FCEVs). The investment will help establish an initial network of up to 15 hydrogen refuelling stations by the end of 2015. It includes US$3.2 million of funding for public sector hydrogen vehicles. The announcement follows news earlier this month tha
  • V2V capabilities to feature in over half of cars sold by 2022, say researchers
    May 19, 2017
    A new report from Juniper Research has revealed that, by 2022, 50 per cent of new vehicles will be shipped with vehicle-to-vehicle (V2V) hardware, a technology that enables real-time short-range communication between vehicles. The new research, Consumer Connected Cars: Applications, Telematics & V2V 2017-2022, found that the total number of V2V-enabled consumer vehicles on the road will reach 35 million by 2022, up from less than 150,000 vehicles in 2017. This strong growth rate (376 per cent CAGR) reflects