Skip to main content

Kapsch to deliver 30 C-ITS devices for Australian connected vehicle pilot

Kapsch TrafficCom is to deliver 30 roadside co-operative ITS (C-ITS) devices over two years in support of a connected vehicle trial in Australia. This project, led by the Queensland Department of Transport and Main Roads, will seek to develop C-ITS technology to reduce road and pedestrian deaths in the Australian state. From late 2019 onwards, the roadside units will be located along a distributed roadside ITS station network in and around the city of Ipswich in Queensland. Around 500 public and fleet ve
December 11, 2018 Read time: 2 mins

Kapsch TrafficCom is to deliver 30 roadside co-operative ITS (C-ITS) devices over two years in support of a connected vehicle trial in Australia.

This project, led by the Queensland Department of Transport and Main Roads, will seek to develop C-ITS technology to reduce road and pedestrian deaths in the Australian state.

From late 2019 onwards, the roadside units will be located along a distributed roadside ITS station network in and around the city of Ipswich in Queensland. Around 500 public and fleet vehicles will be retrofitted with C-ITS technologies to assess the safety benefits as part of the Ipswich connected vehicle pilot.

Various vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) safety applications will be tested. These include warnings for in-vehicle speed, emergency braking, red lights, turning for VRUs and road works.

Mark Bailey, Queensland minister for transport and main roads, says the initiative provides an opportunity for the Queensland government to show road users the safety-related features of co-operative, or connected vehicle technologies.

In October, the Australian government signed a memorandum of understanding with the US state of Michigan to develop vehicle and road systems to help improve road safety.

Related Content

  • Wireless traffic data in real time
    January 31, 2012
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than
  • 'Talking cars' could save lives, study says
    November 26, 2020
    ITS Australia-led research suggests curve warnings on roads would help drivers
  • AT&T, Ford, Nokia and Qualcomm Technologies to test C-V2X in U.S.
    November 3, 2017
    American Telephone & Telegraph (AT&T), Ford, Nokia and Qualcomm Technologies are teaming up with the intention of accelerating the development of connected cars by trailing Cellular-V2X (C-V2X) technologies in the U.S. These tests are aimed at showing automakers and road operators the anticipated cost-efficient benefits associated with embedded C-V2X in vehicles and synergies between the deployment of cellular base stations and roadside infrastructure. Initial testing is expected to begin later this year.
  • In-vehicle automation of safety compliance and other traffic violations
    January 24, 2012
    David Crawford explores new initiatives in enforcement. Achieving the EU’s new road safety target of reducing road traffic deaths by 50 per cent by 2020 depends on removing legal and institutional barriers to the deployment of new enforcement technologies, stresses Jan Malenstein. The senior ITS Adviser to Dutch National Police Agency the KLPD, and a European-level spokesperson on road and traffic safety, points to the importance of, among other requirements, an effective EUwide type approval process for fr