Skip to main content

Japan to develop 3-D maps for self-driving cars in time for Tokyo Olympics

A joint venture in Japan will begin creating high-definition 3-D maps for self-driving cars in September as part of a government effort to have such vehicles on the road by 2020, when the Tokyo Summer Olympics will be held, reports Nikkei. Mitsubishi Electric company Dynamic Map Planning, mapmaker Zenrin and nine Japanese auto makers will begin creating high definition 3D maps for self-driving cars, digitally charting the country's key expressways by driving a vehicle loaded with special surveying equipm
September 13, 2016 Read time: 2 mins
A joint venture in Japan will begin creating high-definition 3-D maps for self-driving cars in September as part of a government effort to have such vehicles on the road by 2020, when the Tokyo Summer Olympics will be held, reports Nikkei.

7874 Mitsubishi Electric company Dynamic Map Planning, mapmaker Zenrin and nine Japanese auto makers will begin creating high definition 3D maps for self-driving cars, digitally charting the country's key expressways by driving a vehicle loaded with special surveying equipment. The data will be processed using computers designed for the creation of maps, which will be provided to automakers that invest in the start-up.

As a first step, Tokyo-based Dynamic Map Planning, appointed by Japan’s Cabinet Office's Cross-ministerial Strategic Innovation Promotion Program, will make maps covering 300km of the country's main expressways.

Mitsubishi Electric has developed the high-precision surveying equipment that will be installed on the survey vehicle. GPS will track the location of the car on the map and sensors designed to detect the inclination of the car will measure the road grades, while lasers will co0llect data on the locations of road signs and traffic lights, as well as right- and left-turns and pedestrian crossings. Lines on the road, such as lanes, noise barriers and road signage, will be plotted on that image to faithfully re-create road conditions for 3-D maps.

For more information on companies in this article

Related Content

  • Platooning with Ease on the I-70
    July 15, 2025
    What would happen to truck platooning - a nascent technology - if the weather turns nasty? The I-70 Truck Automation Corridor Project in the northern US should provide some answers, reports David Arminas…
  • Bluetooth and Wi-Fi offer new options for travel time measurements
    November 20, 2013
    New trials show Bluetooth and Wi-Fi signals can be reliably used for measuring travel times and at a lower cost than an ANPR system, but which is the better proposition depends on many factors. Measuring travel times has traditionally relied automatic number plate (or licence plate) recognition (ANPR/ALPR) cameras capturing the progress of vehicles travelling along a pre-defined route. Such systems also have the benefit of being able to count passing traffic and have become a vital tool in dealing with c
  • Transport technology transforming bus stops in Los Angeles
    January 20, 2012
    David Crawford reports on a pioneering blend of transport technology and aesthetic By gaining a design award before installation has even started, the US$6.9 million City of Santa Monica (California)'s Big Blue Bus Shelter and Branding Package has ensured early interest among what it expects to be a new wave of transit riders. The American Institute of Architects' Los Angeles chapter's recently conferred 'Next LA Citation Award for Architecture', given for design excellence in projects as yet unbuilt, comm
  • TEXpress adds reversible managed lanes
    April 19, 2017
    Land availability restrictions and tidal traffic flows have led to the implementation of a novel managed lane configuration in Texas, as Colin Sowman finds out. Dealing with traffic congestion related to the ‘tidal flows’ caused by large numbers of commuters making their way into major business hubs in the morning and returning to the suburbs in the evening, has seen the widespread use of adaptive signal timing and even reversible lanes.